Timezone: »

 
Poster
Near-Optimal Private and Scalable $k$-Clustering
Vincent Cohen-Addad · Alessandro Epasto · Vahab Mirrokni · Shyam Narayanan · Peilin Zhong

Thu Dec 01 09:00 AM -- 11:00 AM (PST) @ Hall J #824
We study the differentially private (DP) $k$-means and $k$-median clustering problems of $n$ points in $d$-dimensional Euclidean space in the massively parallel computation (MPC) model. We provide two near-optimal algorithms where the near-optimality is in three aspects: they both achieve (1). $O(1)$ parallel computation rounds, (2). near-linear in $n$ and polynomial in $k$ total computational work (i.e., near-linear running time when $n$ is a sufficient polynomial in $k$), (3). $O(1)$ relative approximation and $\text{poly}(k, d)$ additive error. Note that $\Omega(1)$ relative approximation is provably necessary even for any polynomial-time non-private algorithm, and $\Omega(k)$ additive error is a provable lower bound for any polynomial-time DP $k$-means/median algorithm. Our two algorithms provide a tradeoff between the relative approximation and the additive error: the first has $O(1)$ relative approximation and $\sim (k^{2.5} + k^{1.01} \sqrt{d})$ additive error, and the second one achieves $(1+\gamma)$ relative approximation to the optimal non-private algorithm for an arbitrary small constant $\gamma>0$ and with $\text{poly}(k, d)$ additive error for a larger polynomial dependence on $k$ and $d$. To achieve our result, we develop a general framework which partitions the data and reduces the DP clustering problem for the entire dataset to the DP clustering problem for each part. To control the blow-up of the additive error introduced by each part, we develop a novel charging argument which might be of independent interest.

Author Information

Vincent Cohen-Addad (Google research)
Alessandro Epasto (Google)
Alessandro Epasto

I am a staff research scientist at Google, New York working in the OMEGA team part of the Google Research and lead by Vahab Mirrokni. I received a Ph.D in computer science from Sapienza University of Rome, where I was advised by Professor Alessandro Panconesi and supported by the Google Europe Ph.D. Fellowship in Algorithms. I was also a post-doc at the department of computer science of Brown University in Providence (RI), USA where I was advised by Professor Eli Upfal. My research interests include algorithmic problems in machine learning and data mining, in particular in the areas of clustering, and privacy.

Vahab Mirrokni (Google Research)
Shyam Narayanan (Massachusetts Institute of Technology)
Peilin Zhong (Google)

More from the Same Authors