Timezone: »
Poster
Near-Optimal Private and Scalable $k$-Clustering
Vincent Cohen-Addad · Alessandro Epasto · Vahab Mirrokni · Shyam Narayanan · Peilin Zhong
We study the differentially private (DP) $k$-means and $k$-median clustering problems of $n$ points in $d$-dimensional Euclidean space in the massively parallel computation (MPC) model. We provide two near-optimal algorithms where the near-optimality is in three aspects: they both achieve (1). $O(1)$ parallel computation rounds, (2). near-linear in $n$ and polynomial in $k$ total computational work (i.e., near-linear running time when $n$ is a sufficient polynomial in $k$), (3). $O(1)$ relative approximation and $\text{poly}(k, d)$ additive error. Note that $\Omega(1)$ relative approximation is provably necessary even for any polynomial-time non-private algorithm, and $\Omega(k)$ additive error is a provable lower bound for any polynomial-time DP $k$-means/median algorithm. Our two algorithms provide a tradeoff between the relative approximation and the additive error: the first has $O(1)$ relative approximation and $\sim (k^{2.5} + k^{1.01} \sqrt{d})$ additive error, and the second one achieves $(1+\gamma)$ relative approximation to the optimal non-private algorithm for an arbitrary small constant $\gamma>0$ and with $\text{poly}(k, d)$ additive error for a larger polynomial dependence on $k$ and $d$. To achieve our result, we develop a general framework which partitions the data and reduces the DP clustering problem for the entire dataset to the DP clustering problem for each part. To control the blow-up of the additive error introduced by each part, we develop a novel charging argument which might be of independent interest.
Author Information
Vincent Cohen-Addad (Google research)
Alessandro Epasto (Google)

I am a staff research scientist at Google, New York working in the OMEGA team part of the Google Research and lead by Vahab Mirrokni. I received a Ph.D in computer science from Sapienza University of Rome, where I was advised by Professor Alessandro Panconesi and supported by the Google Europe Ph.D. Fellowship in Algorithms. I was also a post-doc at the department of computer science of Brown University in Providence (RI), USA where I was advised by Professor Eli Upfal. My research interests include algorithmic problems in machine learning and data mining, in particular in the areas of clustering, and privacy.
Vahab Mirrokni (Google Research)
Shyam Narayanan (Massachusetts Institute of Technology)
Peilin Zhong (Google)
More from the Same Authors
-
2021 Spotlight: Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces »
Vincent Cohen-Addad · David Saulpic · Chris Schwiegelshohn -
2022 Poster: Posted Pricing and Dynamic Prior-independent Mechanisms with Value Maximizers »
Yuan Deng · Vahab Mirrokni · Hanrui Zhang -
2022 : Scalable and Improved Algorithms for Individually Fair Clustering »
Mohammadhossein Bateni · Vincent Cohen-Addad · Alessandro Epasto · Silvio Lattanzi -
2022 : Differentially Private Graph Learning via Sensitivity-Bounded Personalized PageRank »
Alessandro Epasto · Vahab Mirrokni · Bryan Perozzi · Anton Tsitsulin · Peilin Zhong -
2022 Panel: Panel 1C-5: Privacy of Noisy… & Near-Optimal Private and… »
Shyam Narayanan · Kunal Talwar -
2022 Poster: Differentially Private Graph Learning via Sensitivity-Bounded Personalized PageRank »
Alessandro Epasto · Vahab Mirrokni · Bryan Perozzi · Anton Tsitsulin · Peilin Zhong -
2022 Poster: Stars: Tera-Scale Graph Building for Clustering and Learning »
CJ Carey · Jonathan Halcrow · Rajesh Jayaram · Vahab Mirrokni · Warren Schudy · Peilin Zhong -
2022 Poster: Improved Coresets for Euclidean $k$-Means »
Vincent Cohen-Addad · Kasper Green Larsen · David Saulpic · Chris Schwiegelshohn · Omar Ali Sheikh-Omar -
2022 Poster: Near-Optimal Correlation Clustering with Privacy »
Vincent Cohen-Addad · Chenglin Fan · Silvio Lattanzi · Slobodan Mitrovic · Ashkan Norouzi-Fard · Nikos Parotsidis · Jakub Tarnawski -
2022 Poster: Anonymous Bandits for Multi-User Systems »
Hossein Esfandiari · Vahab Mirrokni · Jon Schneider -
2022 Poster: Hierarchical Agglomerative Graph Clustering in Poly-Logarithmic Depth »
Laxman Dhulipala · David Eisenstat · Jakub Lacki · Vahab Mirrokni · Jessica Shi -
2022 Poster: Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks »
Anders Aamand · Justin Chen · Piotr Indyk · Shyam Narayanan · Ronitt Rubinfeld · Nicholas Schiefer · Sandeep Silwal · Tal Wagner -
2022 Poster: Cluster Randomized Designs for One-Sided Bipartite Experiments »
Jennifer Brennan · Vahab Mirrokni · Jean Pouget-Abadie -
2021 Poster: Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces »
Vincent Cohen-Addad · David Saulpic · Chris Schwiegelshohn -
2021 Poster: Parallel and Efficient Hierarchical k-Median Clustering »
Vincent Cohen-Addad · Silvio Lattanzi · Ashkan Norouzi-Fard · Christian Sohler · Ola Svensson -
2021 Poster: Robust Auction Design in the Auto-bidding World »
Santiago Balseiro · Yuan Deng · Jieming Mao · Vahab Mirrokni · Song Zuo -
2021 Poster: Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls »
Nick Doudchenko · Khashayar Khosravi · Jean Pouget-Abadie · Sébastien Lahaie · Miles Lubin · Vahab Mirrokni · Jann Spiess · guido imbens -
2021 Poster: Parallelizing Thompson Sampling »
Amin Karbasi · Vahab Mirrokni · Mohammad Shadravan -
2017 Poster: Hierarchical Clustering Beyond the Worst-Case »
Vincent Cohen-Addad · Varun Kanade · Frederik Mallmann-Trenn