Timezone: »
Poster
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal · Tong Zhang
We propose a general framework to design posterior sampling methods for model-based RL. We show that the proposed algorithms can be analyzed by reducing regret to Hellinger distance in conditional probability estimation. We further show that optimistic posterior sampling can control this Hellinger distance, when we measure model error via data likelihood. This technique allows us to design and analyze unified posterior sampling algorithms with state-of-the-art sample complexity guarantees for many model-based RL settings. We illustrate our general result in many special cases, demonstrating the versatility of our framework.
Author Information
Alekh Agarwal (Google Research)
Tong Zhang (The Hong Kong University of Science and Technology)
More from the Same Authors
-
2022 : A Neural Tangent Kernel Perspective on Function-Space Regularization in Neural Networks »
Zonghao Chen · Xupeng Shi · Tim G. J. Rudner · Qixuan Feng · Weizhong Zhang · Tong Zhang -
2022 : Provable Benefits of Representational Transfer in Reinforcement Learning »
Alekh Agarwal · Yuda Song · Kaiwen Wang · Mengdi Wang · Wen Sun · Xuezhou Zhang -
2022 : Particle-based Variational Inference with Preconditioned Functional Gradient Flow »
Hanze Dong · Xi Wang · Yong Lin · Tong Zhang -
2022 : Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint »
Hao Liu · Minshuo Chen · Siawpeng Er · Wenjing Liao · Tong Zhang · Tuo Zhao -
2022 Poster: When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint »
Yoav S Freund · Yi-An Ma · Tong Zhang -
2022 Poster: On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL »
Jinglin Chen · Aditya Modi · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal -
2022 Poster: Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions »
Jiafan He · Dongruo Zhou · Tong Zhang · Quanquan Gu -
2021 : HyperDQN: A Randomized Exploration Method for Deep Reinforcement Learning »
Ziniu Li · Yingru Li · Yushun Zhang · Tong Zhang · Zhiquan Luo -
2021 : HyperDQN: A Randomized Exploration Method for Deep Reinforcement Learning »
Ziniu Li · Yingru Li · Yushun Zhang · Tong Zhang · Zhiquan Luo -
2021 Poster: Bellman-consistent Pessimism for Offline Reinforcement Learning »
Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal -
2021 Oral: Bellman-consistent Pessimism for Offline Reinforcement Learning »
Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal -
2020 Poster: Policy Improvement via Imitation of Multiple Oracles »
Ching-An Cheng · Andrey Kolobov · Alekh Agarwal -
2020 Spotlight: Policy Improvement via Imitation of Multiple Oracles »
Ching-An Cheng · Andrey Kolobov · Alekh Agarwal -
2020 Poster: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning »
Alekh Agarwal · Mikael Henaff · Sham Kakade · Wen Sun -
2020 Oral: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2020 Poster: Provably Good Batch Reinforcement Learning Without Great Exploration »
Yao Liu · Adith Swaminathan · Alekh Agarwal · Emma Brunskill -
2020 Spotlight: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2019 Poster: Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting »
Aditya Grover · Jiaming Song · Ashish Kapoor · Kenneth Tran · Alekh Agarwal · Eric Horvitz · Stefano Ermon -
2018 Poster: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2018 Spotlight: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Workshop: OPT 2017: Optimization for Machine Learning »
Suvrit Sra · Sashank J. Reddi · Alekh Agarwal · Benjamin Recht -
2017 Poster: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Oral: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Poster: Diffusion Approximations for Online Principal Component Estimation and Global Convergence »
Chris Junchi Li · Mengdi Wang · Tong Zhang -
2017 Oral: Diffusion Approximations for Online Principal Component Estimation and Global Convergence »
Chris Junchi Li · Mengdi Wang · Tong Zhang -
2017 Poster: On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning »
Xingguo Li · Lin Yang · Jason Ge · Jarvis Haupt · Tong Zhang · Tuo Zhao -
2016 Demonstration: Project Malmo - Minecraft for AI Research »
Katja Hofmann · Matthew A Johnson · Fernando Diaz · Alekh Agarwal · Tim Hutton · David Bignell · Evelyne Viegas -
2016 Poster: Efficient Second Order Online Learning by Sketching »
Haipeng Luo · Alekh Agarwal · Nicolò Cesa-Bianchi · John Langford -
2016 Poster: Contextual semibandits via supervised learning oracles »
Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik -
2016 Poster: PAC Reinforcement Learning with Rich Observations »
Akshay Krishnamurthy · Alekh Agarwal · John Langford -
2015 Workshop: Optimization for Machine Learning (OPT2015) »
Suvrit Sra · Alekh Agarwal · Leon Bottou · Sashank J. Reddi -
2015 Poster: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Spotlight: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Poster: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2015 Oral: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: Scalable Non-linear Learning with Adaptive Polynomial Expansions »
Alekh Agarwal · Alina Beygelzimer · Daniel Hsu · John Langford · Matus J Telgarsky -
2013 Workshop: Learning Faster From Easy Data »
Peter Grünwald · Wouter M Koolen · Sasha Rakhlin · Nati Srebro · Alekh Agarwal · Karthik Sridharan · Tim van Erven · Sebastien Bubeck -
2013 Workshop: OPT2013: Optimization for Machine Learning »
Suvrit Sra · Alekh Agarwal -
2012 Workshop: Optimization for Machine Learning »
Suvrit Sra · Alekh Agarwal -
2012 Poster: Stochastic optimization and sparse statistical recovery: Optimal algorithms for high dimensions »
Alekh Agarwal · Sahand N Negahban · Martin J Wainwright -
2011 Workshop: Computational Trade-offs in Statistical Learning »
Alekh Agarwal · Sasha Rakhlin -
2011 Poster: Distributed Delayed Stochastic Optimization »
Alekh Agarwal · John Duchi -
2011 Poster: Stochastic convex optimization with bandit feedback »
Alekh Agarwal · Dean P Foster · Daniel Hsu · Sham M Kakade · Sasha Rakhlin -
2010 Workshop: Learning on Cores, Clusters, and Clouds »
Alekh Agarwal · Lawrence Cayton · Ofer Dekel · John Duchi · John Langford -
2010 Spotlight: Distributed Dual Averaging In Networks »
John Duchi · Alekh Agarwal · Martin J Wainwright -
2010 Poster: Distributed Dual Averaging In Networks »
John Duchi · Alekh Agarwal · Martin J Wainwright -
2010 Oral: Fast global convergence rates of gradient methods for high-dimensional statistical recovery »
Alekh Agarwal · Sahand N Negahban · Martin J Wainwright -
2010 Poster: Fast global convergence rates of gradient methods for high-dimensional statistical recovery »
Alekh Agarwal · Sahand N Negahban · Martin J Wainwright -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2007 Poster: An Analysis of Inference with the Universum »
Fabian H Sinz · Olivier Chapelle · Alekh Agarwal · Bernhard Schölkopf -
2007 Spotlight: An Analysis of Inference with the Universum »
Fabian H Sinz · Olivier Chapelle · Alekh Agarwal · Bernhard Schölkopf