Timezone: »

 
Poster
BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach
Bo Liu · Mao Ye · Stephen Wright · Peter Stone · Qiang Liu

Wed Nov 30 02:00 PM -- 04:00 PM (PST) @ Hall J #402

Bilevel optimization (BO) is useful for solving a variety of important machine learning problems including but not limited to hyperparameter optimization, meta-learning, continual learning, and reinforcement learning.Conventional BO methods need to differentiate through the low-level optimization process with implicit differentiation, which requires expensive calculations related to the Hessian matrix. There has been a recent quest for first-order methods for BO, but the methods proposed to date tend to be complicated and impractical for large-scale deep learning applications. In this work, we propose a simple first-order BO algorithm that depends only on first-order gradient information, requires no implicit differentiation, and is practical and efficient for large-scale non-convex functions in deep learning. We provide non-asymptotic convergence analysis of the proposed method to stationary points for non-convex objectives and present empirical results that show its superior practical performance.

Author Information

Bo Liu (Stanford University)
Mao Ye (The University of Texas at Austin)
Stephen Wright (UW-Madison)

Steve Wright is a Professor of Computer Sciences at the University of Wisconsin-Madison. His research interests lie in computational optimization and its applications to science and engineering. Prior to joining UW-Madison in 2001, Wright was a Senior Computer Scientist (1997-2001) and Computer Scientist (1990-1997) at Argonne National Laboratory, and Professor of Computer Science at the University of Chicago (2000-2001). He is the past Chair of the Mathematical Optimization Society (formerly the Mathematical Programming Society), the leading professional society in optimization, and a member of the Board of the Society for Industrial and Applied Mathematics (SIAM). Wright is the author or co-author of four widely used books in numerical optimization, including "Primal Dual Interior-Point Methods" (SIAM, 1997) and "Numerical Optimization" (with J. Nocedal, Second Edition, Springer, 2006). He has also authored over 85 refereed journal papers on optimization theory, algorithms, software, and applications. He is coauthor of widely used interior-point software for linear and quadratic optimization. His recent research includes algorithms, applications, and theory for sparse optimization (including applications in compressed sensing and machine learning).

Peter Stone (The University of Texas at Austin, Sony AI)
Qiang Liu (Dartmouth College)

More from the Same Authors