Timezone: »
Poster
First Hitting Diffusion Models for Generating Manifold, Graph and Categorical Data
Mao Ye · Lemeng Wu · Qiang Liu
We propose a family of First Hitting Diffusion Models (FHDM), deep generative models that generate data with a diffusion process that terminates at a random first hitting time. This yields an extension of the standard fixed-time diffusion models that terminate at a pre-specified deterministic time. Although standard diffusion models are designed for continuous unconstrained data, FHDM is naturally designed to learn distributions on continuous as well as a range of discrete and structure domains. Moreover, FHDM enables instance-dependent terminate time and accelerates the diffusion process to sample higher quality data with fewer diffusion steps. Technically, we train FHDM by maximum likelihood estimation on diffusion trajectories augmented from observed data with conditional first hitting processes (i.e., bridge) derived based on Doob's $h$-transform, deviating from the commonly used time-reversal mechanism. We apply FHDM to generate data in various domains such as point cloud (general continuous distribution), climate and geographical events on earth (continuous distribution on the sphere), unweighted graphs (distribution of binary matrices), and segmentation maps of 2D images (high-dimensional categorical distribution). We observe considerable improvement compared with the state-of-the-art approaches in both quality and speed.
Author Information
Mao Ye (The University of Texas at Austin)
Lemeng Wu (The University of Texas at Austin)
Qiang Liu (Dartmouth College)
More from the Same Authors
-
2021 Spotlight: Profiling Pareto Front With Multi-Objective Stein Variational Gradient Descent »
Xingchao Liu · Xin Tong · Qiang Liu -
2022 : BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Mao Ye · Bo Liu · Stephen Wright · Peter Stone · Qiang Liu -
2022 : Diffusion-based Molecule Generation with Informative Prior Bridges »
Chengyue Gong · Lemeng Wu · Xingchao Liu · Mao Ye · Qiang Liu -
2022 : HotProtein: A Novel Framework for Protein Thermostability Prediction and Editing »
Tianlong Chen · Chengyue Gong · Daniel Diaz · Xuxi Chen · Jordan Wells · Qiang Liu · Zhangyang Wang · Andrew Ellington · Alex Dimakis · Adam Klivans -
2022 : First hitting diffusion models »
Mao Ye · Lemeng Wu · Qiang Liu -
2022 : Neural Volumetric Mesh Generator »
Yan Zheng · Lemeng Wu · Xingchao Liu · Zhen Chen · Qiang Liu · Qixing Huang -
2022 : Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow »
Xingchao Liu · Chengyue Gong · Qiang Liu -
2022 : Let us Build Bridges: Understanding and Extending Diffusion Generative Models »
Xingchao Liu · Lemeng Wu · Mao Ye · Qiang Liu -
2023 Poster: FAMO: Fast Adaptive Multitask Optimization »
Bo Liu · Yihao Feng · Peter Stone · Qiang Liu -
2023 Poster: Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the Quantum Many-Body Schrödinger Equation »
Kirill Neklyudov · Jannes Nys · Luca Thiede · Juan Carrasquilla · Qiang Liu · Max Welling · Alireza Makhzani -
2023 Poster: LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning »
Bo Liu · Yifeng Zhu · Chongkai Gao · Yihao Feng · Qiang Liu · Yuke Zhu · Peter Stone -
2022 Poster: Sampling in Constrained Domains with Orthogonal-Space Variational Gradient Descent »
Ruqi Zhang · Qiang Liu · Xin Tong -
2022 Poster: BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Bo Liu · Mao Ye · Stephen Wright · Peter Stone · Qiang Liu -
2022 Poster: Diffusion-based Molecule Generation with Informative Prior Bridges »
Lemeng Wu · Chengyue Gong · Xingchao Liu · Mao Ye · Qiang Liu -
2021 Poster: Conflict-Averse Gradient Descent for Multi-task learning »
Bo Liu · Xingchao Liu · Xiaojie Jin · Peter Stone · Qiang Liu -
2021 Poster: Sampling with Trusthworthy Constraints: A Variational Gradient Framework »
Xingchao Liu · Xin Tong · Qiang Liu -
2021 Poster: Automatic and Harmless Regularization with Constrained and Lexicographic Optimization: A Dynamic Barrier Approach »
Chengyue Gong · Xingchao Liu · Qiang Liu -
2021 Poster: argmax centroid »
Chengyue Gong · Mao Ye · Qiang Liu -
2021 Poster: Profiling Pareto Front With Multi-Objective Stein Variational Gradient Descent »
Xingchao Liu · Xin Tong · Qiang Liu -
2020 Poster: Implicit Regularization and Convergence for Weight Normalization »
Xiaoxia Wu · Edgar Dobriban · Tongzheng Ren · Shanshan Wu · Zhiyuan Li · Suriya Gunasekar · Rachel Ward · Qiang Liu -
2020 Poster: Stein Self-Repulsive Dynamics: Benefits From Past Samples »
Mao Ye · Tongzheng Ren · Qiang Liu -
2020 Poster: Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework »
Dinghuai Zhang · Mao Ye · Chengyue Gong · Zhanxing Zhu · Qiang Liu -
2020 Poster: Firefly Neural Architecture Descent: a General Approach for Growing Neural Networks »
Lemeng Wu · Bo Liu · Peter Stone · Qiang Liu -
2020 Poster: Greedy Optimization Provably Wins the Lottery: Logarithmic Number of Winning Tickets is Enough »
Mao Ye · Lemeng Wu · Qiang Liu -
2019 Poster: Splitting Steepest Descent for Growing Neural Architectures »
Lemeng Wu · Dilin Wang · Qiang Liu -
2019 Spotlight: Splitting Steepest Descent for Growing Neural Architectures »
Lemeng Wu · Dilin Wang · Qiang Liu