Timezone: »
We demonstrate for the first time that ill-conditioned, non-smooth, constrained distributions in very high dimension, upwards of 100,000, can be sampled efficiently \emph{in practice}. Our algorithm incorporates constraints into the Riemannian version of Hamiltonian Monte Carlo and maintains sparsity. This allows us to achieve a mixing rate independent of smoothness and condition numbers. On benchmark data sets in systems biology and linear programming, our algorithm outperforms existing packages by orders of magnitude. In particular, we achieve a 1,000-fold speed-up for sampling from the largest published human metabolic network (RECON3D). Our package has been incorporated into a popular Bioinformatics library.
Author Information
Yunbum Kook (Georgia Institute of Technology)
Yin-Tat Lee
Ruoqi Shen (University of Washington)
Santosh Vempala (Georgia Tech)
More from the Same Authors
-
2023 Poster: Contrastive Moments: Unsupervised Halfspace Learning in Polynomial Time »
Xinyuan Cao · Santosh Vempala -
2022 Poster: When Does Differentially Private Learning Not Suffer in High Dimensions? »
Xuechen Li · Daogao Liu · Tatsunori Hashimoto · Huseyin A. Inan · Janardhan Kulkarni · Yin-Tat Lee · Abhradeep Guha Thakurta -
2022 Poster: Near-Optimal Randomized Exploration for Tabular Markov Decision Processes »
Zhihan Xiong · Ruoqi Shen · Qiwen Cui · Maryam Fazel · Simon Du -
2021 Poster: Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions »
Yin Tat Lee · Ruoqi Shen · Kevin Tian -
2021 Oral: Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions »
Yin Tat Lee · Ruoqi Shen · Kevin Tian -
2020 Poster: Generalized Leverage Score Sampling for Neural Networks »
Jason Lee · Ruoqi Shen · Zhao Song · Mengdi Wang · zheng Yu -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: The Randomized Midpoint Method for Log-Concave Sampling »
Ruoqi Shen · Yin Tat Lee -
2019 Poster: Complexity of Highly Parallel Non-Smooth Convex Optimization »
Sebastien Bubeck · Qijia Jiang · Yin-Tat Lee · Yuanzhi Li · Aaron Sidford -
2019 Spotlight: The Randomized Midpoint Method for Log-Concave Sampling »
Ruoqi Shen · Yin Tat Lee -
2019 Spotlight: Complexity of Highly Parallel Non-Smooth Convex Optimization »
Sebastien Bubeck · Qijia Jiang · Yin-Tat Lee · Yuanzhi Li · Aaron Sidford -
2017 Poster: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2017 Spotlight: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie