Timezone: »
Bayesian optimization over the latent spaces of deep autoencoder models (DAEs) has recently emerged as a promising new approach for optimizing challenging black-box functions over structured, discrete, hard-to-enumerate search spaces (e.g., molecules). Here the DAE dramatically simplifies the search space by mapping inputs into a continuous latent space where familiar Bayesian optimization tools can be more readily applied. Despite this simplification, the latent space typically remains high-dimensional. Thus, even with a well-suited latent space, these approaches do not necessarily provide a complete solution, but may rather shift the structured optimization problem to a high-dimensional one. In this paper, we propose LOL-BO, which adapts the notion of trust regions explored in recent work on high-dimensional Bayesian optimization to the structured setting. By reformulating the encoder to function as both an encoder for the DAE globally and as a deep kernel for the surrogate model within a trust region, we better align the notion of local optimization in the latent space with local optimization in the input space. LOL-BO achieves as much as 20 times improvement over state-of-the-art latent space Bayesian optimization methods across six real-world benchmarks, demonstrating that improvement in optimization strategies is as important as developing better DAE models.
Author Information
Natalie Maus (University of Pennsylvania)
Haydn Jones (Los Alamos National Laboratory)
Juston Moore (Los Alamos National Laboratory)
Juston Moore is a cybersecurity researcher in Los Alamos National Laboratory's Advanced Research for Cyber Systems group. Juston's research bridges statistics, machine learning, and information assurance. His work focuses on large-scale analytics for anomaly detection in unstructured data streams as well as cyber attack attribution.
Matt Kusner (University College London)
John Bradshaw (Massachusetts Institute of Technology)
Jacob Gardner (University of Pennsylvania)
More from the Same Authors
-
2022 : Efficient Variational Gaussian Processes Initialization via Kernel-based Least Squares Fitting »
Xinran Zhu · David Bindel · Jacob Gardner -
2022 : Partial identification without distributional assumptions »
Kirtan Padh · Jakob Zeitler · David Watson · Matt Kusner · Ricardo Silva · Niki Kilbertus -
2022 : Q & A »
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa -
2022 Tutorial: Advances in Bayesian Optimization »
Janardhan Rao Doppa · Virginia Aglietti · Jacob Gardner -
2022 : Tutorial part 1 »
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa -
2022 Workshop: Algorithmic Fairness through the Lens of Causality and Privacy »
Awa Dieng · Miriam Rateike · Golnoosh Farnadi · Ferdinando Fioretto · Matt Kusner · Jessica Schrouff -
2022 : Panel Discussion »
Jacob Gardner · Marta Blangiardo · Viacheslav Borovitskiy · Jasper Snoek · Paula Moraga · Carolina Osorio -
2022 Poster: Local Bayesian optimization via maximizing probability of descent »
Quan Nguyen · Kaiwen Wu · Jacob Gardner · Roman Garnett -
2022 Poster: Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients »
Kyurae Kim · Jisu Oh · Jacob Gardner · Adji Bousso Dieng · Hongseok Kim -
2022 Poster: When Do Flat Minima Optimizers Work? »
Jean Kaddour · Linqing Liu · Ricardo Silva · Matt Kusner -
2021 Poster: Scaling Gaussian Processes with Derivative Information Using Variational Inference »
Misha Padidar · Xinran Zhu · Leo Huang · Jacob Gardner · David Bindel -
2020 Workshop: Machine Learning for Molecules »
José Miguel Hernández-Lobato · Matt Kusner · Brooks Paige · Marwin Segler · Jennifer Wei -
2020 Poster: Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization »
Geoff Pleiss · Martin Jankowiak · David Eriksson · Anil Damle · Jacob Gardner -
2020 Poster: A Class of Algorithms for General Instrumental Variable Models »
Niki Kilbertus · Matt Kusner · Ricardo Silva -
2020 Poster: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2020 Spotlight: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2020 Poster: Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees »
Shali Jiang · Daniel Jiang · Maximilian Balandat · Brian Karrer · Jacob Gardner · Roman Garnett -
2019 Poster: A Model to Search for Synthesizable Molecules »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2012 Poster: Topic-Partitioned Multinetwork Embeddings »
Peter Krafft · Juston S Moore · Hanna Wallach · Bruce Desmarais