Timezone: »
Semi-supervised learning (SSL) provides a powerful framework for leveraging unlabeled data. Existing SSL typically requires all classes have labels. However, in many real-world applications, there may exist some classes that are difficult to label or newly occurred classes that cannot be labeled in time, resulting in there are unseen classes in unlabeled data. Unseen classes will be misclassified as seen classes, causing poor classification performance. The performance of seen classes is also harmed by the existence of unseen classes. This limits the practical and wider application of SSL. To address this problem, this paper proposes a new SSL approach that can classify not only seen classes but also unseen classes. Our approach consists of two modules: unseen class classification and learning pace synchronization. Specifically, we first enable the SSL methods to classify unseen classes by exploiting pairwise similarity between examples and then synchronize the learning pace between seen and unseen classes by proposing an adaptive threshold with distribution alignment. Extensive empirical results show our approach achieves significant performance improvement in both seen and unseen classes compared with previous studies.
Author Information
Lan-Zhe Guo (Nanjing University)
Yi-Ge Zhang (Nanjing University)
Zhi-Fan Wu (Nanjing University)
Jie-Jing Shao (Nanjing University)
Yu-Feng Li (Nanjing University)
More from the Same Authors
-
2022 Poster: LOG: Active Model Adaptation for Label-Efficient OOD Generalization »
Jie-Jing Shao · Lan-Zhe Guo · Xiao-wen Yang · Yu-Feng Li -
2022 Spotlight: Lightning Talks 3A-2 »
shuwen yang · Xu Zhang · Delvin Ce Zhang · Lan-Zhe Guo · Renzhe Xu · Zhuoer Xu · Yao-Xiang Ding · Weihan Li · Xingxuan Zhang · Xi-Zhu Wu · Zhenyuan Yuan · Hady Lauw · Yu Qi · Yi-Ge Zhang · Zhihao Yang · Guanghui Zhu · Dong Li · Changhua Meng · Kun Zhou · Gang Pan · Zhi-Fan Wu · Bo Li · Minghui Zhu · Zhi-Hua Zhou · Yafeng Zhang · Yingxueff Zhang · shiwen cui · Jie-Jing Shao · Zhanguang Zhang · Zhenzhe Ying · Xiaolong Chen · Yu-Feng Li · Guojie Song · Peng Cui · Weiqiang Wang · Ming GU · Jianye Hao · Yihua Huang -
2022 Spotlight: Robust Semi-Supervised Learning when Not All Classes have Labels »
Lan-Zhe Guo · Yi-Ge Zhang · Zhi-Fan Wu · Jie-Jing Shao · Yu-Feng Li -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: LOG: Active Model Adaptation for Label-Efficient OOD Generalization »
Jie-Jing Shao · Lan-Zhe Guo · Xiao-wen Yang · Yu-Feng Li -
2022 Poster: Grow and Merge: A Unified Framework for Continuous Categories Discovery »
Xinwei Zhang · Jianwen Jiang · Yutong Feng · Zhi-Fan Wu · Xibin Zhao · Hai Wan · Mingqian Tang · Rong Jin · Yue Gao -
2022 Poster: USB: A Unified Semi-supervised Learning Benchmark for Classification »
Yidong Wang · Hao Chen · Yue Fan · Wang SUN · Ran Tao · Wenxin Hou · Renjie Wang · Linyi Yang · Zhi Zhou · Lan-Zhe Guo · Heli Qi · Zhen Wu · Yu-Feng Li · Satoshi Nakamura · Wei Ye · Marios Savvides · Bhiksha Raj · Takahiro Shinozaki · Bernt Schiele · Jindong Wang · Xing Xie · Yue Zhang -
2021 Poster: STEP: Out-of-Distribution Detection in the Presence of Limited In-Distribution Labeled Data »
Zhi Zhou · Lan-Zhe Guo · Zhanzhan Cheng · Yu-Feng Li · Shiliang Pu