Timezone: »
Amid mounting concern about the reliability and credibility of machine learning research, we present a principled framework for making robust and generalizable claims: the multiverse analysis. Our framework builds upon the multiverse analysis introduced in response to psychology's own reproducibility crisis. To efficiently explore high-dimensional and often continuous ML search spaces, we model the multiverse with a Gaussian Process surrogate and apply Bayesian experimental design. Our framework is designed to facilitate drawing robust scientific conclusions about model performance, and thus our approach focuses on exploration rather than conventional optimization. In the first of two case studies, we investigate disputed claims about the relative merit of adaptive optimizers. Second, we synthesize conflicting research on the effect of learning rate on the large batch training generalization gap. For the machine learning community, the multiverse analysis is a simple and effective technique for identifying robust claims, for increasing transparency, and a step toward improved reproducibility.
Author Information
Samuel J. Bell (University of Cambridge)

Sam applies theoretical approaches, practical methods and metascientific ideas from experimental psychology to understanding machine learning systems, with a particular focus on neural network behaviour. He is primarily interested in machine learning fairness, robustness, and research reproducibility. He is a machine learning PhD student in the ML@CL group at the University of Cambridge (Queens’ College), supervised by Prof. Neil Lawrence. Sam was a visiting student at The Alan Turing Institute during the 2021/2 academic year, and has recently worked with the socially-responsible AI team at FAIR (Meta AI) Paris. During his master’s he worked on deep learning and natural language processing at the Cambridge Computer Laboratory. He did his bachelor’s in computer science at the University of Manchester, graduating 2013. In between, Sam has also simulated financial crises in market risk at Goldman Sachs, built new retail banks at Thought Machine, and developed next generation credit scores at Credit Kudos.
Onno Kampman (University of Cambridge)
Jesse Dodge (Allen Institute for AI)
Neil Lawrence (University of Cambridge)
More from the Same Authors
-
2022 : Ice Core Dating using Probabilistic Programming »
Aditya Ravuri · Tom Andersson · Ieva Kazlauskaite · William Tebbutt · Richard Turner · Scott Hosking · Neil Lawrence · Markus Kaiser -
2022 : Multi-fidelity experimental design for ice-sheet simulation »
Pierre Thodoroff · Markus Kaiser · Rosie Williams · Robert Arthern · Scott Hosking · Neil Lawrence · Ieva Kazlauskaite -
2022 : Panel on Privacy and Security in Machine Learning Systems »
Graham Cormode · Borja Balle · Yu-Xiang Wang · Alejandro Saucedo · Neil Lawrence -
2021 Panel: How Should a Machine Learning Researcher Think About AI Ethics? »
Amanda Askell · Abeba Birhane · Jesse Dodge · Casey Fiesler · Pascale N Fung · Hanna Wallach -
2020 : Panel & Closing »
Tamara Broderick · Laurent Dinh · Neil Lawrence · Kristian Lum · Hanna Wallach · Sinead Williamson -
2020 Workshop: ML Retrospectives, Surveys & Meta-Analyses (ML-RSA) »
Chhavi Yadav · Prabhu Pradhan · Jesse Dodge · Mayoore Jaiswal · Peter Henderson · Abhishek Gupta · Ryan Lowe · Jessica Forde · Joelle Pineau -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Tutorial: Deep Probabilistic Modelling with Gaussian Processes »
Neil D Lawrence -
2015 : Sparse Adaptive Prior for Time Dependent Model Parameters »
Jesse Dodge -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Session: Oral Session 1 »
Neil D Lawrence -
2012 Poster: Fast Variational Inference in the Conjugate Exponential Family »
James Hensman · Magnus Rattray · Neil D Lawrence -
2011 Poster: Learning sparse inverse covariance matrices in the presence of confounders »
Oliver Stegle · Christoph Lippert · Joris M Mooij · Neil D Lawrence · Karsten Borgwardt -
2011 Poster: Variational Gaussian Process Dynamical Systems »
Andreas Damianou · Michalis Titsias · Neil D Lawrence -
2010 Placeholder: Opening Remarks »
Terrence Sejnowski · Neil D Lawrence -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2009 Workshop: Kernels for Multiple Outputs and Multi-task Learning: Frequentist and Bayesian Points of View »
Mauricio A Alvarez · Lorenzo Rosasco · Neil D Lawrence -
2008 Poster: Sparse Convolved Gaussian Processes for Multi-ouptut Regression »
Mauricio A Alvarez · Neil D Lawrence -
2008 Poster: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Spotlight: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Poster: Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes »
Ben Calderhead · Mark A Girolami · Neil D Lawrence -
2007 Workshop: Approximate Bayesian Inference in Continuous/Hybrid Models »
Matthias Seeger · David Barber · Neil D Lawrence · Onno Zoeter -
2006 Workshop: Learning when test and training inputs have different distributions »
Joaquin Quiñonero-Candela · Masashi Sugiyama · Anton Schwaighofer · Neil D Lawrence -
2006 Poster: Modelling transcriptional regulation using Gaussian Processes »
Neil D Lawrence · Guido Sanguinetti · Magnus Rattray