Timezone: »
While neural architecture search (NAS) has enabled automated machine learning (AutoML) for well-researched areas, its application to tasks beyond computer vision is still under-explored. As less-studied domains are precisely those where we expect AutoML to have the greatest impact, in this work we study NAS for efficiently solving diverse problems. Seeking an approach that is fast, simple, and broadly applicable, we fix a standard convolutional network (CNN) topology and propose to search for the right kernel sizes and dilations its operations should take on. This dramatically expands the model's capacity to extract features at multiple resolutions for different types of data while only requiring search over the operation space. To overcome the efficiency challenges of naive weight-sharing in this search space, we introduce DASH, a differentiable NAS algorithm that computes the mixture-of-operations using the Fourier diagonalization of convolution, achieving both a better asymptotic complexity and an up-to-10x search time speedup in practice. We evaluate DASH on ten tasks spanning a variety of application domains such as PDE solving, protein folding, and heart disease detection. DASH outperforms state-of-the-art AutoML methods in aggregate, attaining the best-known automated performance on seven tasks. Meanwhile, on six of the ten tasks, the combined search and retraining time is less than 2x slower than simply training a CNN backbone that is far less accurate.
Author Information
Junhong Shen (Carnegie Mellon University)
Misha Khodak (CMU)
Ameet Talwalkar (CMU)
More from the Same Authors
-
2021 : Simulated User Studies for Explanation Evaluation »
Valerie Chen · Gregory Plumb · Nicholay Topin · Ameet S Talwalkar -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2022 : AutoML for Climate Change: A Call to Action »
Renbo Tu · Nicholas Roberts · Vishak Prasad C · Sibasis Nayak · Paarth Jain · Frederic Sala · Ganesh Ramakrishnan · Ameet Talwalkar · Willie Neiswanger · Colin White -
2022 Competition: AutoML Decathlon: Diverse Tasks, Modern Methods, and Efficiency at Scale »
Samuel Guo · Cong Xu · Nicholas Roberts · Misha Khodak · Junhong Shen · Evan Sparks · Ameet Talwalkar · Yuriy Nevmyvaka · Frederic Sala · Anderson Schneider -
2022 Poster: Use-Case-Grounded Simulations for Explanation Evaluation »
Valerie Chen · Nari Johnson · Nicholay Topin · Gregory Plumb · Ameet Talwalkar -
2022 Poster: Provably tuning the ElasticNet across instances »
Maria-Florina Balcan · Misha Khodak · Dravyansh Sharma · Ameet Talwalkar -
2022 Poster: Learning Predictions for Algorithms with Predictions »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii -
2022 Poster: Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2022 Poster: NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks »
Renbo Tu · Nicholas Roberts · Misha Khodak · Junhong Shen · Frederic Sala · Ameet Talwalkar -
2021 : [S9] Simulated User Studies for Explanation Evaluation »
Valerie Chen · Gregory Plumb · Nicholay Topin · Ameet S Talwalkar -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2021 Poster: Rethinking Neural Operations for Diverse Tasks »
Nicholas Roberts · Mikhail Khodak · Tri Dao · Liam Li · Christopher Ré · Ameet Talwalkar -
2021 Poster: Learning-to-learn non-convex piecewise-Lipschitz functions »
Maria-Florina Balcan · Mikhail Khodak · Dravyansh Sharma · Ameet Talwalkar -
2020 Workshop: International Workshop on Scalability, Privacy, and Security in Federated Learning (SpicyFL 2020) »
Xiaolin Andy Li · Dejing Dou · Ameet Talwalkar · Hongyu Li · Jianzong Wang · Yanzhi Wang -
2020 Poster: Regularizing Black-box Models for Improved Interpretability »
Gregory Plumb · Maruan Al-Shedivat · Ángel Alexander Cabrera · Adam Perer · Eric Xing · Ameet Talwalkar -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 : TBD »
Ameet Talwalkar -
2019 Poster: Adaptive Gradient-Based Meta-Learning Methods »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar -
2018 Poster: Model Agnostic Supervised Local Explanations »
Gregory Plumb · Denali Molitor · Ameet Talwalkar -
2017 Poster: Variable Importance Using Decision Trees »
Jalil Kazemitabar · Arash Amini · Adam Bloniarz · Ameet S Talwalkar -
2017 Poster: Federated Multi-Task Learning »
Virginia Smith · Chao-Kai Chiang · Maziar Sanjabi · Ameet S Talwalkar -
2016 : Invited Talk: Paleo: A Performance Model for Deep Neural Networks (Ameet Talwalkar, UCLA) »
Ameet S Talwalkar -
2016 Poster: Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale »
Firas Abuzaid · Joseph K Bradley · Feynman Liang · Andrew Feng · Lee Yang · Matei Zaharia · Ameet S Talwalkar -
2014 Workshop: Distributed Machine Learning and Matrix Computations »
Reza Zadeh · Ion Stoica · Ameet S Talwalkar -
2011 Workshop: Sparse Representation and Low-rank Approximation »
Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike Davies · Remi Gribonval · Guillaume R Obozinski -
2011 Poster: Divide-and-Conquer Matrix Factorization »
Lester W Mackey · Ameet S Talwalkar · Michael Jordan -
2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar -
2009 Poster: Ensemble Nystrom Method »
Sanjiv Kumar · Mehryar Mohri · Ameet S Talwalkar