Timezone: »
Learning set functions becomes increasingly important in many applications like product recommendation and compound selection in AI-aided drug discovery. The majority of existing works study methodologies of set function learning under the function value oracle, which, however, requires expensive supervision signals. This renders it impractical for applications with only weak supervisions under the Optimal Subset (OS) oracle, the study of which is surprisingly overlooked. In this work, we present a principled yet practical maximum likelihood learning framework, termed as EquiVSet, that simultaneously meets the following desiderata of learning neural set functions under the OS oracle: i) permutation invariance of the set mass function being modeled; ii) permission of varying ground set; iii) minimum prior and iv) scalability. The main components of our framework involve: an energy-based treatment of the set mass function, DeepSet-style architectures to handle permutation invariance, mean-field variational inference, and its amortized variants. Thanks to the delicate combination of these advanced architectures, empirical studies on three real-world applications (including Amazon product recommendation, set anomaly detection, and compound selection for virtual screening) demonstrate that EquiVSet outperforms the baselines by a large margin.
Author Information
Zijing Ou (Imperial College London)
Tingyang Xu (Tencent AI Lab)
Qinliang Su (Sun Yat-sen University)
Yingzhen Li (Imperial College London)
Yingzhen Li is a senior researcher at Microsoft Research Cambridge. She received her PhD from the University of Cambridge, and previously she has interned at Disney Research. She is passionate about building reliable machine learning systems, and her approach combines both Bayesian statistics and deep learning. Her contributions to the approximate inference field include: (1) algorithmic advances, such as variational inference with different divergences, combining variational inference with MCMC and approximate inference with implicit distributions; (2) applications of approximate inference, such as uncertainty estimation in Bayesian neural networks and algorithms to train deep generative models. She has served as area chairs at NeurIPS/ICML/ICLR/AISTATS on related research topics, and she is a co-organizer of the AABI2020 symposium, a flagship event of approximate inference.
Peilin Zhao (Tencent AI Lab)
Yatao Bian (Tencent AI Lab)
More from the Same Authors
-
2021 : Accurate Imputation and Efficient Data Acquisitionwith Transformer-based VAEs »
Sarah Lewis · Tatiana Matejovicova · Yingzhen Li · Angus Lamb · Yordan Zaykov · Miltiadis Allamanis · Cheng Zhang -
2021 : Accurate Imputation and Efficient Data Acquisitionwith Transformer-based VAEs »
Sarah Lewis · Tatiana Matejovicova · Yingzhen Li · Angus Lamb · Yordan Zaykov · Miltiadis Allamanis · Cheng Zhang -
2022 Poster: Equivariant Graph Hierarchy-Based Neural Networks »
Jiaqi Han · Wenbing Huang · Tingyang Xu · Yu Rong -
2022 Poster: Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · MA Kaili · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 Poster: Scalable Infomin Learning »
Yanzhi Chen · weihao sun · Yingzhen Li · Adrian Weller -
2022 : Fast and Accurate Antibody Structure Prediction without Sequence Homologs »
Jiaxiang Wu · Fandi Wu · Biaobin Jiang · Wei Liu · Peilin Zhao -
2022 : Diversity Boosted Learning for Domain Generalization with A Large Number of Domains »
XI LENG · Yatao Bian · Xiaoying Tang -
2022 : Equivariant Graph Hierarchy-based Neural Networks »
Jiaqi Han · Yu Rong · Tingyang Xu · Wenbing Huang -
2022 Spotlight: Lightning Talks 5A-4 »
Yangrui Chen · Zhiyang Chen · Liang Zhang · Hanqing Wang · Jiaqi Han · Shuchen Wu · shaohui peng · Ganqu Cui · Yoav Kolumbus · Noemi Elteto · Xing Hu · Anwen Hu · Wei Liang · Cong Xie · Lifan Yuan · Noam Nisan · Wenbing Huang · Yousong Zhu · Ishita Dasgupta · Luc V Gool · Tingyang Xu · Rui Zhang · Qin Jin · Zhaowen Li · Meng Ma · Bingxiang He · Yangyi Chen · Juncheng Gu · Wenguan Wang · Ke Tang · Yu Rong · Eric Schulz · Fan Yang · Wei Li · Zhiyuan Liu · Jiaming Guo · Yanghua Peng · Haibin Lin · Haixin Wang · Qi Yi · Maosong Sun · Ruizhi Chen · Chuan Wu · Chaoyang Zhao · Yibo Zhu · Liwei Wu · xishan zhang · Zidong Du · Rui Zhao · Jinqiao Wang · Ling Li · Qi Guo · Ming Tang · Yunji Chen -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Equivariant Graph Hierarchy-Based Neural Networks »
Jiaqi Han · Wenbing Huang · Tingyang Xu · Yu Rong -
2022 Spotlight: Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · MA Kaili · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup »
Zongbo Han · Zhipeng Liang · Fan Yang · Liu Liu · Lanqing Li · Yatao Bian · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Panel: Panel 1C-1: Learning Neural Set… & Holomorphic Equilibrium Propagation… »
Axel Laborieux · Yatao Bian -
2022 : Poster session 1 »
Yingzhen Li -
2022 Workshop: NeurIPS 2022 Workshop on Score-Based Methods »
Yingzhen Li · Yang Song · Valentin De Bortoli · Francois-Xavier Briol · Wenbo Gong · Alexia Jolicoeur-Martineau · Arash Vahdat -
2022 Poster: Repairing Neural Networks by Leaving the Right Past Behind »
Ryutaro Tanno · Melanie F. Pradier · Aditya Nori · Yingzhen Li -
2022 Poster: UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup »
Zongbo Han · Zhipeng Liang · Fan Yang · Liu Liu · Lanqing Li · Yatao Bian · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 Poster: Sparse Uncertainty Representation in Deep Learning with Inducing Weights »
Hippolyt Ritter · Martin Kukla · Cheng Zhang · Yingzhen Li -
2021 : Evaluating Approximate Inference in Bayesian Deep Learning + Q&A »
Andrew Gordon Wilson · Pavel Izmailov · Matthew Hoffman · Yarin Gal · Yingzhen Li · Melanie F. Pradier · Sharad Vikram · Andrew Foong · Sanae Lotfi · Sebastian Farquhar -
2021 Poster: Not All Low-Pass Filters are Robust in Graph Convolutional Networks »
Heng Chang · Yu Rong · Tingyang Xu · Yatao Bian · Shiji Zhou · Xin Wang · Junzhou Huang · Wenwu Zhu -
2021 Poster: Meta-learning with an Adaptive Task Scheduler »
Huaxiu Yao · Yu Wang · Ying Wei · Peilin Zhao · Mehrdad Mahdavi · Defu Lian · Chelsea Finn -
2020 Poster: On the Expressiveness of Approximate Inference in Bayesian Neural Networks »
Andrew Foong · David Burt · Yingzhen Li · Richard Turner -
2020 Poster: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Spotlight: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Poster: Self-Supervised Graph Transformer on Large-Scale Molecular Data »
Yu Rong · Yatao Bian · Tingyang Xu · Weiyang Xie · Ying Wei · Wenbing Huang · Junzhou Huang -
2020 Poster: Deep Multimodal Fusion by Channel Exchanging »
Yikai Wang · Wenbing Huang · Fuchun Sun · Tingyang Xu · Yu Rong · Junzhou Huang -
2020 Poster: Adversarial Sparse Transformer for Time Series Forecasting »
Sifan Wu · Xi Xiao · Qianggang Ding · Peilin Zhao · Ying Wei · Junzhou Huang -
2020 Tutorial: (Track1) Advances in Approximate Inference »
Yingzhen Li · Cheng Zhang -
2019 Poster: Hyperparameter Learning via Distributional Transfer »
Ho Chung Law · Peilin Zhao · Leung Sing Chan · Junzhou Huang · Dino Sejdinovic -
2019 Poster: DTWNet: a Dynamic Time Warping Network »
Xingyu Cai · Tingyang Xu · Jinfeng Yi · Junzhou Huang · Sanguthevar Rajasekaran