Timezone: »
Poster
Globally Convergent Policy Search for Output Estimation
Jack Umenberger · Max Simchowitz · Juan Perdomo · Kaiqing Zhang · Russ Tedrake
We introduce the first direct policy search algorithm which provably converges to the globally optimal dynamic filter for the classical problem of predicting the outputs of a linear dynamical system, given noisy, partial observations. Despite the ubiquity of partial observability in practice, theoretical guarantees for direct policy search algorithms, one of the backbones of modern reinforcement learning, have proven difficult to achieve. This is primarily due to the degeneracies which arise when optimizing over filters that maintain an internal state. In this paper, we provide a new perspective on this challenging problem based on the notion of informativity, which intuitively requires that all components of a filter’s internal state are representative of the true state of the underlying dynamical system. We show that informativity overcomes the aforementioned degeneracy. Specifically, we propose a regularizer which explicitly enforces informativity, and establish that gradient descent on this regularized objective - combined with a “reconditioning step” – converges to the globally optimal cost at a $O(1/T)$ rate.
Author Information
Jack Umenberger (Massachusetts Institute of Technology)
Max Simchowitz (MIT)
Juan Perdomo (University of California, Berkeley)
Kaiqing Zhang (Massachusetts Institute of Technology)
Russ Tedrake (MIT)
More from the Same Authors
-
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 : Exploration and Incentives in Reinforcement Learning »
Max Simchowitz · Aleksandrs Slivkins -
2021 : Exploration and Incentives in Reinforcement Learning »
Max Simchowitz · Aleksandrs Slivkins -
2022 : Learning to Extrapolate: A Transductive Approach »
Aviv Netanyahu · Abhishek Gupta · Max Simchowitz · Kaiqing Zhang · Pulkit Agrawal -
2022 Poster: What is a Good Metric to Study Generalization of Minimax Learners? »
Asuman Ozdaglar · Sarath Pattathil · Jiawei Zhang · Kaiqing Zhang -
2022 Poster: Efficient and Near-Optimal Smoothed Online Learning for Generalized Linear Functions »
Adam Block · Max Simchowitz -
2021 : Spotlight 1: Exploration and Incentives in Reinforcement Learning »
Max Simchowitz · Aleksandrs Slivkins -
2021 Poster: Online Control of Unknown Time-Varying Dynamical Systems »
Edgar Minasyan · Paula Gradu · Max Simchowitz · Elad Hazan -
2021 Poster: Stabilizing Dynamical Systems via Policy Gradient Methods »
Juan Perdomo · Jack Umenberger · Max Simchowitz -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 Poster: Stochastic Optimization for Performative Prediction »
Celestine Mendler-Dünner · Juan Perdomo · Tijana Zrnic · Moritz Hardt -
2020 Poster: Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems »
Aman Sinha · Matthew O'Kelly · Russ Tedrake · John Duchi -
2020 Poster: Making Non-Stochastic Control (Almost) as Easy as Stochastic »
Max Simchowitz -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 Poster: Constrained episodic reinforcement learning in concave-convex and knapsack settings »
Kianté Brantley · Miro Dudik · Thodoris Lykouris · Sobhan Miryoosefi · Max Simchowitz · Aleksandrs Slivkins · Wen Sun -
2019 Poster: Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs »
Max Simchowitz · Kevin Jamieson -
2018 Poster: Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation »
Matthew O'Kelly · Aman Sinha · Hongseok Namkoong · Russ Tedrake · John Duchi