Timezone: »
Poster
Reconstruction on Trees and Low-Degree Polynomials
Frederic Koehler · Elchanan Mossel
The study of Markov processes and broadcasting on trees has deep connections to a variety of areas including statistical physics, graphical models, phylogenetic reconstruction, Markov Chain Monte Carlo, and community detection in random graphs. Notably, the celebrated Belief Propagation (BP) algorithm achieves Bayes-optimal performance for the reconstruction problem of predicting the value of the Markov process at the root of the tree from its values at the leaves.Recently, the analysis of low-degree polynomials has emerged as a valuable tool for predicting computational-to-statistical gaps. In this work, we investigate the performance of low-degree polynomials for the reconstruction problem on trees. Perhaps surprisingly, we show that there are simple tree models with $N$ leaves and bounded arity where (1) nontrivial reconstruction of the root value is possible with a simple polynomial time algorithm and with robustness to noise, but not with any polynomial of degree $N^{c}$ for $c > 0$ a constant depending only on the arity, and (2) when the tree is unknown and given multiple samples with correlated root assignments, nontrivial reconstruction of the root value is possible with a simple Statistical Query algorithm but not with any polynomial of degree $N^c$. These results clarify some of the limitations of low-degree polynomials vs. polynomial time algorithms for Bayesian estimation problems. They also complement recent work of Moitra, Mossel, and Sandon who studied the circuit complexity of Belief Propagation. As a consequence of our main result, we are able to prove a result of independent interest regarding the performance of RBF kernel ridge regression for learning to predict the root coloration: for some $c' > 0$ depending only on the arity, $\exp(N^{c'})$ many samples are needed for the kernel regression to obtain nontrivial correlation with the true regression function (BP). We pose related open questions about low-degree polynomials and the Kesten-Stigum threshold.
Author Information
Frederic Koehler (MIT)
Elchanan Mossel (MIT)
More from the Same Authors
-
2022 : Statistical Efficiency of Score Matching: The View from Isoperimetry »
Frederic Koehler · Alexander Heckett · Andrej Risteski -
2022 Panel: Panel 2C-7: Optimal Rates for… & Reconstruction on Trees… »
Frederic Koehler · Zhu Li -
2022 Poster: A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models »
Lijia Zhou · Frederic Koehler · Pragya Sur · Danica J. Sutherland · Nati Srebro -
2022 Poster: Lower Bounds on Randomly Preconditioned Lasso via Robust Sparse Designs »
Jonathan Kelner · Frederic Koehler · Raghu Meka · Dhruv Rohatgi -
2021 Oral: Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds and Benign Overfitting »
Frederic Koehler · Lijia Zhou · Danica J. Sutherland · Nathan Srebro -
2021 Poster: Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds and Benign Overfitting »
Frederic Koehler · Lijia Zhou · Danica J. Sutherland · Nathan Srebro -
2020 Poster: Learning Some Popular Gaussian Graphical Models without Condition Number Bounds »
Jonathan Kelner · Frederic Koehler · Raghu Meka · Ankur Moitra -
2020 Poster: From Boltzmann Machines to Neural Networks and Back Again »
Surbhi Goel · Adam Klivans · Frederic Koehler -
2020 Spotlight: Learning Some Popular Gaussian Graphical Models without Condition Number Bounds »
Jonathan Kelner · Frederic Koehler · Raghu Meka · Ankur Moitra -
2020 Poster: Classification Under Misspecification: Halfspaces, Generalized Linear Models, and Evolvability »
Sitan Chen · Frederic Koehler · Ankur Moitra · Morris Yau -
2020 Spotlight: Classification Under Misspecification: Halfspaces, Generalized Linear Models, and Evolvability »
Sitan Chen · Frederic Koehler · Ankur Moitra · Morris Yau -
2019 Poster: Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay »
Frederic Koehler -
2019 Spotlight: Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay »
Frederic Koehler -
2018 Poster: Contextual Stochastic Block Models »
Yash Deshpande · Subhabrata Sen · Andrea Montanari · Elchanan Mossel -
2018 Spotlight: Contextual Stochastic Block Models »
Yash Deshpande · Subhabrata Sen · Andrea Montanari · Elchanan Mossel -
2017 Poster: Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications »
Linus Hamilton · Frederic Koehler · Ankur Moitra