Timezone: »
Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CASTformer, a novel type of adversarial transformers, for 2D medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CASTformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model’s inner workings, shed light on the challenges in improved transparency, and demonstrate that transfer learning can greatly improve performance and reduce the size of medical image datasets in training, making CASTformer a strong starting point for downstream medical image analysis tasks.
Author Information
Chenyu You (Yale University)
Chenyu You is a Ph.D. student in the Department of Electrical Engineering, at Yale University, working with Professor James Duncan. He obtained his master degree in Electrical Engineering from Stanford University, specializing in Artificial Intelligence (AI) Prior to that, he received his bachelor degree (with highest honors) in Electrical Engineering and Mathematics from Rensselaer Polytechnic Institute (RPI). He is broadly interested in the fields of machine learning, computer/medical vision, natural language processing, signal processing, optimization, and interdisciplinary applications.
Ruihan Zhao (UT Austin)
Fenglin Liu (University of Oxford)
Siyuan Dong (Yale University)
Sandeep Chinchali (University of Texas, Austin)
Ufuk Topcu (The University of Texas at Austin)
Lawrence Staib (Yale)
James Duncan (Yale University)
More from the Same Authors
-
2022 Poster: Expectation-Maximization Contrastive Learning for Compact Video-and-Language Representations »
Peng Jin · Jinfa Huang · Fenglin Liu · Xian Wu · Shen Ge · Guoli Song · David Clifton · Jie Chen -
2022 : Robust Forecasting for Robotic Control: A Game-Theoretic Approach »
Shubhankar Agarwal · David Fridovich-Keil · Sandeep Chinchali -
2022 : Robust Forecasting for Robotic Control: A Game-Theoretic Approach »
Shubhankar Agarwal · David Fridovich-Keil · Sandeep Chinchali -
2022 : Robust Forecasting for Robotic Control: A Game-Theoretic Approach »
Shubhankar Agarwal · David Fridovich-Keil · Sandeep Chinchali -
2022 Spotlight: Lightning Talks 6B-3 »
Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu -
2022 Spotlight: Expectation-Maximization Contrastive Learning for Compact Video-and-Language Representations »
Peng Jin · Jinfa Huang · Fenglin Liu · Xian Wu · Shen Ge · Guoli Song · David Clifton · Jie Chen -
2022 : Session 2 Keynote 2 »
James Duncan -
2022 Poster: Retrieve, Reason, and Refine: Generating Accurate and Faithful Patient Instructions »
Fenglin Liu · Bang Yang · Chenyu You · Xian Wu · Shen Ge · Zhangdaihong Liu · Xu Sun · Yang Yang · David Clifton -
2021 Poster: Momentum Centering and Asynchronous Update for Adaptive Gradient Methods »
Juntang Zhuang · Yifan Ding · Tommy Tang · Nicha Dvornek · Sekhar C Tatikonda · James Duncan -
2021 Poster: Auto-Encoding Knowledge Graph for Unsupervised Medical Report Generation »
Fenglin Liu · Chenyu You · Xian Wu · Shen Ge · Sheng wang · Xu Sun -
2020 Poster: AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients »
Juntang Zhuang · Tommy Tang · Yifan Ding · Sekhar C Tatikonda · Nicha Dvornek · Xenophon Papademetris · James Duncan -
2020 Spotlight: AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients »
Juntang Zhuang · Tommy Tang · Yifan Ding · Sekhar C Tatikonda · Nicha Dvornek · Xenophon Papademetris · James Duncan -
2020 Poster: Prophet Attention: Predicting Attention with Future Attention »
Fenglin Liu · Xuancheng Ren · Xian Wu · Shen Ge · Wei Fan · Yuexian Zou · Xu Sun -
2019 Poster: Aligning Visual Regions and Textual Concepts for Semantic-Grounded Image Representations »
Fenglin Liu · Yuanxin Liu · Xuancheng Ren · Xiaodong He · Xu Sun -
2018 Poster: Constrained Cross-Entropy Method for Safe Reinforcement Learning »
Min Wen · Ufuk Topcu