Timezone: »
Poster
SKFlow: Learning Optical Flow with Super Kernels
SHANGKUN SUN · Yuanqi Chen · Yu Zhu · Guodong Guo · Ge Li
Optical flow estimation is a classical yet challenging task in computer vision. One of the essential factors in accurately predicting optical flow is to alleviate occlusions between frames. However, it is still a thorny problem for current top-performing optical flow estimation methods due to insufficient local evidence to model occluded areas. In this paper, we propose the Super Kernel Flow Network (SKFlow), a CNN architecture to ameliorate the impacts of occlusions on optical flow estimation. SKFlow benefits from the super kernels which bring enlarged receptive fields to complement the absent matching information and recover the occluded motions. We present efficient super kernel designs by utilizing conical connections and hybrid depth-wise convolutions. Extensive experiments demonstrate the effectiveness of SKFlow on multiple benchmarks, especially in the occluded areas. Without pre-trained backbones on ImageNet and with a modest increase in computation, SKFlow achieves compelling performance and ranks $\textbf{1st}$ among currently published methods on the Sintel benchmark. On the challenging Sintel clean and final passes (test), SKFlow surpasses the best-published result in the unmatched areas ($7.96$ and $12.50$) by $9.09\%$ and $7.92\%$. The code is available at https://github.com/littlespray/SKFlow.
Author Information
SHANGKUN SUN (Peking University)
Yuanqi Chen (SECE, Peking University)
Yu Zhu (Baidu)
Guodong Guo (West Virginia University)
Ge Li (SECE, Shenzhen Graduate School, Peking University)
More from the Same Authors
-
2022 Poster: Learning to Share in Networked Multi-Agent Reinforcement Learning »
Yuxuan Yi · Ge Li · Yaowei Wang · Zongqing Lu -
2022 Poster: Perceptual Attacks of No-Reference Image Quality Models with Human-in-the-Loop »
Weixia Zhang · Dingquan Li · Xiongkuo Min · Guangtao Zhai · Guodong Guo · Xiaokang Yang · Kede Ma -
2023 Poster: BRAM: Communication-Efficient 1-bit Adaptive Optimizer for Practical Distributed DNN Training »
Hanyang Peng · Shuang Qin · Yue Yu · Jin Wang · Hui Wang · Ge Li -
2022 Spotlight: Lightning Talks 4B-2 »
Artem Moskalev · Weixia Zhang · Vudtiwat Ngampruetikorn · Anna Sepliarskaia · Dingquan Li · David Schwab · Ivan Sosnovik · Xiongkuo Min · Arnold Smeulders · Guangtao Zhai · Guodong Guo · Xiaokang Yang · Kede Ma -
2022 Spotlight: Perceptual Attacks of No-Reference Image Quality Models with Human-in-the-Loop »
Weixia Zhang · Dingquan Li · Xiongkuo Min · Guangtao Zhai · Guodong Guo · Xiaokang Yang · Kede Ma -
2022 Spotlight: SKFlow: Learning Optical Flow with Super Kernels »
SHANGKUN SUN · Yuanqi Chen · Yu Zhu · Guodong Guo · Ge Li -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer »
Yanjing Li · Sheng Xu · Baochang Zhang · Xianbin Cao · Peng Gao · Guodong Guo -
2019 Poster: Multi-mapping Image-to-Image Translation via Learning Disentanglement »
Xiaoming Yu · Yuanqi Chen · Shan Liu · Thomas Li · Ge Li