Timezone: »
The receptive field (RF), which determines the region of time series to be “seen” and used, is critical to improve the performance for time series classification (TSC). However, the variation of signal scales across and within time series data, makes it challenging to decide on proper RF sizes for TSC. In this paper, we propose a dynamic sparse network (DSN) with sparse connections for TSC, which can learn to cover various RF without cumbersome hyper-parameters tuning. The kernels in each sparse layer are sparse and can be explored under the constraint regions by dynamic sparse training, which makes it possible to reduce the resource cost. The experimental results show that the proposed DSN model can achieve state-of-art performance on both univariate and multivariate TSC datasets with less than 50% computational cost compared with recent baseline methods, opening the path towards more accurate resource-aware methods for time series analyses. Our code is publicly available at: https://github.com/QiaoXiao7282/DSN.
Author Information
Qiao Xiao (Eindhoven University of Technology)
Boqian Wu (University of Twente)
Yu Zhang (HKUST)
Shiwei Liu (UT Austin)
I am a third-year Ph.D. student in the Data Mining Group, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e). My current research topics are dynamic sparse training, sparse neural networks, pruning, the generalization of neural networks, etc. I am looking for a postdoc position in machine learning.
Mykola Pechenizkiy (TU Eindhoven)
Elena Mocanu (University of Twente)
Decebal Constantin Mocanu (University of Twente)
More from the Same Authors
-
2022 : An Empirical Evaluation of Posterior Sampling for Constrained Reinforcement Learning »
Danil Provodin · Pratik Gajane · Mykola Pechenizkiy · Maurits Kaptein -
2022 : An Empirical Evaluation of Posterior Sampling for Constrained Reinforcement Learning »
Danil Provodin · Pratik Gajane · Mykola Pechenizkiy · Maurits Kaptein -
2023 Poster: Towards Data-Agnostic Pruning At Initialization: What Makes a Good Sparse Mask? »
Hoang Pham · The Anh Ta · Shiwei Liu · Lichuan Xiang · Dung Le · Hongkai Wen · Long Tran-Thanh -
2023 Poster: The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter »
AJAY JAISWAL · Shiwei Liu · Tianlong Chen · Zhangyang "Atlas" Wang -
2023 Poster: Don’t just prune by magnitude! Your mask topology is a secret weapon »
Duc Hoang · Souvik Kundu · Shiwei Liu · Zhangyang "Atlas" Wang -
2023 Poster: Dynamic Sparsity Is Channel-Level Sparsity Learner »
Lu Yin · Gen Li · Meng Fang · Li Shen · Tianjin Huang · Zhangyang "Atlas" Wang · Vlado Menkovski · Xiaolong Ma · Mykola Pechenizkiy · Shiwei Liu -
2023 Poster: Interpretable Reward Redistribution in Reinforcement Learning: A Causal Approach »
Yudi Zhang · Yali Du · Biwei Huang · Ziyan Wang · Jun Wang · Meng Fang · Mykola Pechenizkiy -
2023 Poster: COOM: A Game Benchmark for Continual Reinforcement Learning »
Tristan Tomilin · Meng Fang · Yudi Zhang · Mykola Pechenizkiy -
2022 Poster: Where to Pay Attention in Sparse Training for Feature Selection? »
Ghada Sokar · Zahra Atashgahi · Mykola Pechenizkiy · Decebal Constantin Mocanu -
2021 : The Impact of Batch Learning in Stochastic Bandits »
Danil Provodin · Pratik Gajane · Mykola Pechenizkiy · Maurits Kaptein -
2021 Poster: Sparse Training via Boosting Pruning Plasticity with Neuroregeneration »
Shiwei Liu · Tianlong Chen · Xiaohan Chen · Zahra Atashgahi · Lu Yin · Huanyu Kou · Li Shen · Mykola Pechenizkiy · Zhangyang Wang · Decebal Constantin Mocanu -
2021 Poster: Effective Meta-Regularization by Kernelized Proximal Regularization »
Weisen Jiang · James Kwok · Yu Zhang -
2021 Poster: Multi-Objective Meta Learning »
Feiyang YE · Baijiong Lin · Zhixiong Yue · Pengxin Guo · Qiao Xiao · Yu Zhang -
2019 : Poster Session »
Nathalie Baracaldo · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu -
2018 : Posters and Open Discussions (see below for poster titles) »
Ramya Malur Srinivasan · Miguel Perez · Yuanyuan Liu · Ben Wood · Dan Philps · Kyle Brown · Daniel Martin · Mykola Pechenizkiy · Luca Costabello · Rongguang Wang · Suproteem Sarkar · Sangwoong Yoon · Zhuoran Xiong · Enguerrand Horel · Zhu (Drew) Zhang · Ulf Johansson · Jonathan Kochems · Gregory Sidier · Prashant Reddy · Lana Cuthbertson · Yvonne Wambui · Christelle Marfaing · Galen Harrison · Irene Unceta Mendieta · Thomas Kehler · Mark Weber · Li Ling · Ceena Modarres · Abhinav Dhall · Arash Nourian · David Byrd · Ajay Chander · Xiao-Yang Liu · Hongyang Yang · Shuang (Sophie) Zhai · Freddy Lecue · Sirui Yao · Rory McGrath · Artur Garcez · Vangelis Bacoyannis · Alexandre Garcia · Lukas Gonon · Mark Ibrahim · Melissa Louie · Omid Ardakanian · Cecilia Sönströd · Kojin Oshiba · Chaofan Chen · Suchen Jin · aldo pareja · Toyo Suzumura -
2018 Poster: Learning to Multitask »
Yu Zhang · Ying Wei · Qiang Yang