Timezone: »
Sampling from an unnormalized target distribution is an essential problem with many applications in probabilistic inference. Stein Variational Gradient Descent (SVGD) has been shown to be a powerful method that iteratively updates a set of particles to approximate the distribution of interest. Furthermore, when analysing its asymptotic properties, SVGD reduces exactly to a single-objective optimization problem and can be viewed as a probabilistic version of this single-objective optimization problem. A natural question then arises: ``Can we derive a probabilistic version of the multi-objective optimization?''. To answer this question, we propose Stochastic Multiple Target Sampling Gradient Descent (MT-SGD), enabling us to sample from multiple unnormalized target distributions. Specifically, our MT-SGD conducts a flow of intermediate distributions gradually orienting to multiple target distributions, which allows the sampled particles to move to the joint high-likelihood region of the target distributions. Interestingly, the asymptotic analysis shows that our approach reduces exactly to the multiple-gradient descent algorithm for multi-objective optimization, as expected. Finally, we conduct comprehensive experiments to demonstrate the merit of our approach to multi-task learning.
Author Information
Hoang Phan (School of Information and Communication Technology, Hanoi University of Science and Technology)
Ngoc Tran (VinAI Research)

Master of Science from Rensselaer Polytechnic Institute, Research Resident at VinAI Research.
Trung Le (Monash University)
Toan Tran (Vinai artificial intelligence application and research JSC)
Nhat Ho (University of Texas at Austin)
Dinh Phung (Monash University)
More from the Same Authors
-
2022 Poster: MoVQ: Modulating Quantized Vectors for High-Fidelity Image Generation »
Chuanxia Zheng · Tung-Long Vuong · Jianfei Cai · Dinh Phung -
2022 : Statistical and Computational Complexities of BFGS Quasi-Newton Method for Generalized Linear Models »
Qiujiang Jin · Aryan Mokhtari · Nhat Ho · Tongzheng Ren -
2022 Spotlight: Lightning Talks 6B-4 »
Junjie Chen · Chuanxia Zheng · JINLONG LI · Yu Shi · Shichao Kan · Yu Wang · Fermín Travi · Ninh Pham · Lei Chai · Guobing Gan · Tung-Long Vuong · Gonzalo Ruarte · Tao Liu · Li Niu · Jingjing Zou · Zequn Jie · Peng Zhang · Ming LI · Yixiong Liang · Guolin Ke · Jianfei Cai · Gaston Bujia · Sunzhu Li · Siyuan Zhou · Jingyang Lin · Xu Wang · Min Li · Zhuoming Chen · Qing Ling · Xiaolin Wei · Xiuqing Lu · Shuxin Zheng · Dinh Phung · Yigang Cen · Jianlou Si · Juan Esteban Kamienkowski · Jianxin Wang · Chen Qian · Lin Ma · Benyou Wang · Yingwei Pan · Tie-Yan Liu · Liqing Zhang · Zhihai He · Ting Yao · Tao Mei -
2022 Spotlight: MoVQ: Modulating Quantized Vectors for High-Fidelity Image Generation »
Chuanxia Zheng · Tung-Long Vuong · Jianfei Cai · Dinh Phung -
2022 Poster: Amortized Projection Optimization for Sliced Wasserstein Generative Models »
Khai Nguyen · Nhat Ho -
2022 Poster: Learning Fractional White Noises in Neural Stochastic Differential Equations »
Anh Tong · Thanh Nguyen-Tang · Toan Tran · Jaesik Choi -
2022 Poster: Revisiting Sliced Wasserstein on Images: From Vectorization to Convolution »
Khai Nguyen · Nhat Ho -
2022 Poster: Beyond black box densities: Parameter learning for the deviated components »
Dat Do · Nhat Ho · XuanLong Nguyen -
2022 Poster: FourierFormer: Transformer Meets Generalized Fourier Integral Theorem »
Tan Nguyen · Minh Pham · Tam Nguyen · Khai Nguyen · Stanley Osher · Nhat Ho -
2022 Poster: Improving Transformer with an Admixture of Attention Heads »
Tan Nguyen · Tam Nguyen · Hai Do · Khai Nguyen · Vishwanath Saragadam · Minh Pham · Khuong Duy Nguyen · Nhat Ho · Stanley Osher -
2021 Poster: Structured Dropout Variational Inference for Bayesian Neural Networks »
Son Nguyen · Duong Nguyen · Khai Nguyen · Khoat Than · Hung Bui · Nhat Ho -
2021 Poster: Exploiting Domain-Specific Features to Enhance Domain Generalization »
Manh-Ha Bui · Toan Tran · Anh Tran · Dinh Phung -
2021 Poster: On Robust Optimal Transport: Computational Complexity and Barycenter Computation »
Khang Le · Huy Nguyen · Quang M Nguyen · Tung Pham · Hung Bui · Nhat Ho -
2021 Poster: On Learning Domain-Invariant Representations for Transfer Learning with Multiple Sources »
Trung Phung · Trung Le · Tung-Long Vuong · Toan Tran · Anh Tran · Hung Bui · Dinh Phung -
2021 Poster: Domain Invariant Representation Learning with Domain Density Transformations »
A. Tuan Nguyen · Toan Tran · Yarin Gal · Atilim Gunes Baydin -
2020 : QuatRE: Relation-Aware Quaternions for Knowledge Graph Embeddings »
Dai Quoc Nguyen · Dinh Phung -
2020 : Quaternion Graph Neural Networks »
Dai Quoc Nguyen · Tu Dinh Nguyen · Dinh Phung -
2020 Poster: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm »
Tianyi Lin · Nhat Ho · Xi Chen · Marco Cuturi · Michael Jordan -
2020 Poster: OTLDA: A Geometry-aware Optimal Transport Approach for Topic Modeling »
Viet Huynh · He Zhao · Dinh Phung -
2020 Spotlight: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak