Timezone: »
Several recent works have proposed a class of algorithms for the offline reinforcement learning (RL) problem that we will refer to as return-conditioned supervised learning (RCSL). RCSL algorithms learn the distribution of actions conditioned on both the state and the return of the trajectory. Then they define a policy by conditioning on achieving high return. In this paper, we provide a rigorous study of the capabilities and limitations of RCSL something which is crucially missing in previous work. We find that RCSL returns the optimal policy under a set of assumptions that are stronger than those needed for the more traditional dynamic programming-based algorithms. We provide specific examples of MDPs and datasets that illustrate the necessity of these assumptions and the limits of RCSL. Finally, we present empirical evidence that these limitations will also cause issues in practice by providing illustrative experiments in simple point-mass environments and on datasets from the D4RL benchmark.
Author Information
David Brandfonbrener (New York University)
Alberto Bietti (Meta AI / NYU)
Jacob Buckman (MILA)
Romain Laroche (Microsoft Research)
Joan Bruna (NYU)
More from the Same Authors
-
2021 : An Extensible Benchmark Suite for Learning to Simulate Physical Systems »
Karl Otness · Arvi Gjoka · Joan Bruna · Daniele Panozzo · Benjamin Peherstorfer · Teseo Schneider · Denis Zorin -
2021 Spotlight: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 : Quantile Filtered Imitation Learning »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2022 Poster: Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning »
Riashat Islam · Hongyu Zang · Anirudh Goyal · Alex Lamb · Kenji Kawaguchi · Xin Li · Romain Laroche · Yoshua Bengio · Remi Tachet des Combes -
2022 : Visual Backtracking Teleoperation: A Data Collection Protocol for Offline Image-Based RL »
David Brandfonbrener · Stephen Tu · Avi Singh · Stefan Welker · Chad Boodoo · Nikolai Matni · Jacob Varley -
2022 : Visual Backtracking Teleoperation: A Data Collection Protocol for Offline Image-Based RL »
David Brandfonbrener · Stephen Tu · Avi Singh · Stefan Welker · Chad Boodoo · Nikolai Matni · Jake Varley -
2022 : Visual Backtracking Teleoperation: A Data Collection Protocol for Offline Image-Based RL »
David Brandfonbrener · Stephen Tu · Avi Singh · Stefan Welker · Chad Boodoo · Nikolai Matni · Jacob Varley -
2023 Poster: A Neural Collapse Perspective on Feature Evolution in Graph Neural Networks »
Vignesh Kothapalli · Tom Tirer · Joan Bruna -
2023 Poster: Understanding and Addressing the Pitfalls of Bisimulation-based Representations in Offline Reinforcement Learning »
Hongyu Zang · Xin Li · Leiji Zhang · Yang Liu · Baigui Sun · Riashat Islam · Remi Tachet des Combes · Romain Laroche -
2023 Poster: Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation »
David Brandfonbrener · Ofir Nachum · Joan Bruna -
2023 Poster: Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced Datasets »
Zhang-Wei Hong · Aviral Kumar · Sathwik Karnik · Abhishek Bhandwaldar · Akash Srivastava · Joni Pajarinen · Romain Laroche · Abhishek Gupta · Pulkit Agrawal -
2023 Poster: On Single-Index Models beyond Gaussian Data »
Aaron Zweig · Loucas PILLAUD-VIVIEN · Joan Bruna -
2023 Poster: Birth of a Transformer: A Memory Viewpoint »
Alberto Bietti · Vivien Cabannes · Diane Bouchacourt · Herve Jegou · Leon Bottou -
2022 Poster: Exponential Separations in Symmetric Neural Networks »
Aaron Zweig · Joan Bruna -
2022 Poster: On Non-Linear operators for Geometric Deep Learning »
Grégoire Sergeant-Perthuis · Jakob Maier · Joan Bruna · Edouard Oyallon -
2022 Poster: Learning single-index models with shallow neural networks »
Alberto Bietti · Joan Bruna · Clayton Sanford · Min Jae Song -
2021 Poster: Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs »
harsh satija · Philip Thomas · Joelle Pineau · Romain Laroche -
2021 Poster: Dr Jekyll & Mr Hyde: the strange case of off-policy policy updates »
Romain Laroche · Remi Tachet des Combes -
2021 Poster: On the Sample Complexity of Learning under Geometric Stability »
Alberto Bietti · Luca Venturi · Joan Bruna -
2021 Poster: On the Cryptographic Hardness of Learning Single Periodic Neurons »
Min Jae Song · Ilias Zadik · Joan Bruna -
2021 Poster: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 Poster: On the Universality of Graph Neural Networks on Large Random Graphs »
Nicolas Keriven · Alberto Bietti · Samuel Vaiter -
2020 Poster: A mean-field analysis of two-player zero-sum games »
Carles Domingo-Enrich · Samy Jelassi · Arthur Mensch · Grant Rotskoff · Joan Bruna -
2020 Poster: Can Graph Neural Networks Count Substructures? »
Zhengdao Chen · Lei Chen · Soledad Villar · Joan Bruna -
2020 Poster: Convergence and Stability of Graph Convolutional Networks on Large Random Graphs »
Nicolas Keriven · Alberto Bietti · Samuel Vaiter -
2020 Spotlight: Convergence and Stability of Graph Convolutional Networks on Large Random Graphs »
Nicolas Keriven · Alberto Bietti · Samuel Vaiter -
2020 Session: Orals & Spotlights Track 26: Graph/Relational/Theory »
Joan Bruna · Cassio de Campos -
2020 Poster: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Spotlight: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Poster: A Dynamical Central Limit Theorem for Shallow Neural Networks »
Zhengdao Chen · Grant Rotskoff · Joan Bruna · Eric Vanden-Eijnden -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Poster Spotlight 1 »
David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He -
2019 : Opening Remarks »
Reinhard Heckel · Paul Hand · Alex Dimakis · Joan Bruna · Deanna Needell · Richard Baraniuk -
2019 Workshop: Solving inverse problems with deep networks: New architectures, theoretical foundations, and applications »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Joan Bruna · Alex Dimakis · Deanna Needell -
2019 Poster: Gradient Dynamics of Shallow Univariate ReLU Networks »
Francis Williams · Matthew Trager · Daniele Panozzo · Claudio Silva · Denis Zorin · Joan Bruna -
2019 Poster: On the Expressive Power of Deep Polynomial Neural Networks »
Joe Kileel · Matthew Trager · Joan Bruna -
2019 Poster: On the Inductive Bias of Neural Tangent Kernels »
Alberto Bietti · Julien Mairal -
2019 Poster: Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias »
Stéphane d'Ascoli · Levent Sagun · Giulio Biroli · Joan Bruna -
2019 Poster: On the equivalence between graph isomorphism testing and function approximation with GNNs »
Zhengdao Chen · Soledad Villar · Lei Chen · Joan Bruna -
2019 Poster: Stability of Graph Scattering Transforms »
Fernando Gama · Alejandro Ribeiro · Joan Bruna -
2018 : Invited Talk 3 »
Joan Bruna -
2018 : Joan Bruna »
Joan Bruna -
2018 Poster: Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion »
Jacob Buckman · Danijar Hafner · George Tucker · Eugene Brevdo · Honglak Lee -
2018 Oral: Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion »
Jacob Buckman · Danijar Hafner · George Tucker · Eugene Brevdo · Honglak Lee -
2017 Poster: Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure »
Alberto Bietti · Julien Mairal -
2017 Spotlight: Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure »
Alberto Bietti · Julien Mairal -
2017 Poster: Hybrid Reward Architecture for Reinforcement Learning »
Harm Van Seijen · Mehdi Fatemi · Romain Laroche · Joshua Romoff · Tavian Barnes · Jeffrey Tsang -
2017 Poster: Invariance and Stability of Deep Convolutional Representations »
Alberto Bietti · Julien Mairal -
2017 Tutorial: Geometric Deep Learning on Graphs and Manifolds »
Michael Bronstein · Joan Bruna · arthur szlam · Xavier Bresson · Yann LeCun -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus