Timezone: »
Meta-learning approaches enable machine learning systems to adapt to new tasks given few examples by leveraging knowledge from related tasks. However, a large number of meta-training tasks are still required for generalization to unseen tasks during meta-testing, which introduces a critical bottleneck for real-world problems that come with only few tasks, due to various reasons including the difficulty and cost of constructing tasks. Recently, several task augmentation methods have been proposed to tackle this issue using domain-specific knowledge to design augmentation techniques to densify the meta-training task distribution. However, such reliance on domain-specific knowledge renders these methods inapplicable to other domains. While Manifold Mixup based task augmentation methods are domain-agnostic, we empirically find them ineffective on non-image domains. To tackle these limitations, we propose a novel domain-agnostic task augmentation method, Meta-Interpolation, which utilizes expressive neural set functions to densify the meta-training task distribution using bilevel optimization. We empirically validate the efficacy of Meta-Interpolation on eight datasets spanning across various domains such as image classification, molecule property prediction, text classification and speech recognition. Experimentally, we show that Meta-Interpolation consistently outperforms all the relevant baselines. Theoretically, we prove that task interpolation with the set function regularizes the meta-learner to improve generalization. We provide our source code in the supplementary material.
Author Information
Seanie Lee (Korea Advanced Institute of Science & Technology)
Bruno Andreis (KAIST)
Kenji Kawaguchi (National University of Singapore)
Juho Lee (KAIST, AITRICS)
Sung Ju Hwang (KAIST, AITRICS)
More from the Same Authors
-
2021 Spotlight: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning »
Hayeon Lee · Sewoong Lee · Song Chong · Sung Ju Hwang -
2021 Spotlight: Task-Adaptive Neural Network Search with Meta-Contrastive Learning »
Wonyong Jeong · Hayeon Lee · Geon Park · Eunyoung Hyung · Jinheon Baek · Sung Ju Hwang -
2021 : Skill-based Meta-Reinforcement Learning »
Taewook Nam · Shao-Hua Sun · Karl Pertsch · Sung Ju Hwang · Joseph Lim -
2021 : Skill-based Meta-Reinforcement Learning »
Taewook Nam · Shao-Hua Sun · Karl Pertsch · Sung Ju Hwang · Joseph Lim -
2022 Poster: Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning »
Riashat Islam · Hongyu Zang · Anirudh Goyal · Alex Lamb · Kenji Kawaguchi · Xin Li · Romain Laroche · Yoshua Bengio · Remi Tachet des Combes -
2022 Poster: Learning to Generate Inversion-Resistant Model Explanations »
Hoyong Jeong · Suyoung Lee · Sung Ju Hwang · Sooel Son -
2022 : Distortion-Aware Network Pruning and Feature Reuse for Real-time Video Segmentation »
Hyunsu Rhee · Dongchan Min · Sunil Hwang · Bruno Andreis · Sung Ju Hwang -
2022 : SPRINT: Scalable Semantic Policy Pre-training via Language Instruction Relabeling »
Jesse Zhang · Karl Pertsch · Jiahui Zhang · Taewook Nam · Sung Ju Hwang · Xiang Ren · Joseph Lim -
2022 : Fine-tuning Diffusion Models with Limited Data »
Taehong Moon · Moonseok Choi · Gayoung Lee · Jung-Woo Ha · Juho Lee -
2022 : SPRINT: Scalable Semantic Policy Pre-training via Language Instruction Relabeling »
Jesse Zhang · Karl Pertsch · Jiahui Zhang · Taewook Nam · Sung Ju Hwang · Xiang Ren · Joseph Lim -
2022 Poster: Factorized-FL: Personalized Federated Learning with Parameter Factorization & Similarity Matching »
Wonyong Jeong · Sung Ju Hwang -
2022 Poster: Graph Self-supervised Learning with Accurate Discrepancy Learning »
Dongki Kim · Jinheon Baek · Sung Ju Hwang -
2022 Poster: MGNNI: Multiscale Graph Neural Networks with Implicit Layers »
Juncheng Liu · Bryan Hooi · Kenji Kawaguchi · Xiaokui Xiao -
2022 Poster: On Divergence Measures for Bayesian Pseudocoresets »
Balhae Kim · Jungwon Choi · Seanie Lee · Yoonho Lee · Jung-Woo Ha · Juho Lee -
2021 Poster: Edge Representation Learning with Hypergraphs »
Jaehyeong Jo · Jinheon Baek · Seul Lee · Dongki Kim · Minki Kang · Sung Ju Hwang -
2021 Poster: Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Generation »
Soojung Yang · Doyeong Hwang · Seul Lee · Seongok Ryu · Sung Ju Hwang -
2021 Poster: Diversity Matters When Learning From Ensembles »
Giung Nam · Jongmin Yoon · Yoonho Lee · Juho Lee -
2021 Poster: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning »
Hayeon Lee · Sewoong Lee · Song Chong · Sung Ju Hwang -
2021 Poster: Task-Adaptive Neural Network Search with Meta-Contrastive Learning »
Wonyong Jeong · Hayeon Lee · Geon Park · Eunyoung Hyung · Jinheon Baek · Sung Ju Hwang -
2021 Poster: Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding »
Bruno Andreis · Jeffrey Willette · Juho Lee · Sung Ju Hwang -
2020 Poster: Bootstrapping neural processes »
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh -
2020 Poster: Neural Complexity Measures »
Yoonho Lee · Juho Lee · Sung Ju Hwang · Eunho Yang · Seungjin Choi -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Contributed Talk - Towards deep amortized clustering »
Juho Lee · Yoonho Lee · Yee Whye Teh -
2018 Poster: Uncertainty-Aware Attention for Reliable Interpretation and Prediction »
Jay Heo · Hae Beom Lee · Saehoon Kim · Juho Lee · Kwang Joon Kim · Eunho Yang · Sung Ju Hwang -
2018 Poster: DropMax: Adaptive Variational Softmax »
Hae Beom Lee · Juho Lee · Saehoon Kim · Eunho Yang · Sung Ju Hwang -
2016 Poster: Finite-Dimensional BFRY Priors and Variational Bayesian Inference for Power Law Models »
Juho Lee · Lancelot F James · Seungjin Choi -
2015 Poster: Tree-Guided MCMC Inference for Normalized Random Measure Mixture Models »
Juho Lee · Seungjin Choi