Timezone: »
An influential framework within systems neuroscience posits that neural computations can be understood in terms of low-dimensional dynamics in recurrent circuits. A number of methods have thus been developed to extract latent dynamical systems from neural recordings, but inferring models that are both predictive and interpretable remains a difficult challenge. Here we propose a new method called Low-rank Inference from Neural Trajectories (LINT), based on a class of low-rank recurrent neural networks (lrRNNs) for which a link between connectivity and dynamics has been previously demonstrated. By fitting such networks to trajectories of neural activity, LINT yields a mechanistic model of latent dynamics, as well as a set of axes for dimensionality reduction and verifiable predictions for inactivations of specific populations of neurons. Here, we first demonstrate the consistency of our method and apply it to two use cases: (i) we reverse-engineer "black-box" vanilla RNNs trained to perform cognitive tasks, and (ii) we infer latent dynamics and neural contributions from electrophysiological recordings of nonhuman primates performing a similar task.
Author Information
Adrian Valente (ENS)
Jonathan Pillow (Princeton University)
Srdjan Ostojic (Ecole Normale Superieure)
More from the Same Authors
-
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 : Non-exchangeability in Infinite Switching Linear Dynamical Systems »
Victor Geadah · Jonathan Pillow -
2022 Poster: Dynamic Inverse Reinforcement Learning for Characterizing Animal Behavior »
Zoe Ashwood · Aditi Jha · Jonathan Pillow -
2020 Poster: High-contrast “gaudy” images improve the training of deep neural network models of visual cortex »
Benjamin Cowley · Jonathan Pillow -
2020 Poster: Identifying signal and noise structure in neural population activity with Gaussian process factor models »
Stephen Keeley · Mikio Aoi · Yiyi Yu · Spencer Smith · Jonathan Pillow -
2020 Poster: Inferring learning rules from animal decision-making »
Zoe Ashwood · Nicholas Roy · Ji Hyun Bak · Jonathan Pillow -
2020 Poster: The interplay between randomness and structure during learning in RNNs »
Friedrich Schuessler · Francesca Mastrogiuseppe · Alexis Dubreuil · Srdjan Ostojic · Omri Barak -
2020 Oral: The interplay between randomness and structure during learning in RNNs »
Friedrich Schuessler · Francesca Mastrogiuseppe · Alexis Dubreuil · Srdjan Ostojic · Omri Barak -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2018 Poster: Scaling the Poisson GLM to massive neural datasets through polynomial approximations »
David Zoltowski · Jonathan Pillow -
2018 Poster: Efficient inference for time-varying behavior during learning »
Nicholas Roy · Ji Hyun Bak · Athena Akrami · Carlos Brody · Jonathan Pillow -
2018 Poster: Model-based targeted dimensionality reduction for neuronal population data »
Mikio Aoi · Jonathan Pillow -
2018 Poster: Power-law efficient neural codes provide general link between perceptual bias and discriminability »
Michael J Morais · Jonathan Pillow -
2018 Poster: Learning a latent manifold of odor representations from neural responses in piriform cortex »
Anqi Wu · Stan Pashkovski · Sandeep Datta · Jonathan Pillow -
2017 Poster: Gaussian process based nonlinear latent structure discovery in multivariate spike train data »
Anqi Wu · Nicholas Roy · Stephen Keeley · Jonathan Pillow -
2016 Poster: Bayesian latent structure discovery from multi-neuron recordings »
Scott Linderman · Ryan Adams · Jonathan Pillow -
2016 Poster: Adaptive optimal training of animal behavior »
Ji Hyun Bak · Jung Choi · Ilana Witten · Athena Akrami · Jonathan Pillow -
2016 Poster: A Bayesian method for reducing bias in neural representational similarity analysis »
Mingbo Cai · Nicolas W Schuck · Jonathan Pillow · Yael Niv -
2015 Poster: Convolutional spike-triggered covariance analysis for neural subunit models »
Anqi Wu · Il Memming Park · Jonathan Pillow