Timezone: »
Poster
Causal Identification under Markov equivalence: Calculus, Algorithm, and Completeness
Amin Jaber · Adele Ribeiro · Jiji Zhang · Elias Bareinboim
One common task in many data sciences applications is to answer questions about the effect of new interventions, like: `what would happen to $Y$ if we make $X$ equal to $x$ while observing covariates $Z=z$?'. Formally, this is known as conditional effect identification, where the goal is to determine whether a post-interventional distribution is computable from the combination of an observational distribution and assumptions about the underlying domain represented by a causal diagram. A plethora of methods was developed for solving this problem, including the celebrated do-calculus [Pearl, 1995]. In practice, these results are not always applicable since they require a fully specified causal diagram as input, which is usually not available. In this paper, we assume as the input of the task a less informative structure known as a partial ancestral graph (PAG), which represents a Markov equivalence class of causal diagrams, learnable from observational data. We make the following contributions under this relaxed setting. First, we introduce a new causal calculus, which subsumes the current state-of-the-art, PAG-calculus. Second, we develop an algorithm for conditional effect identification given a PAG and prove it to be both sound and complete. In words, failure of the algorithm to identify a certain effect implies that this effect is not identifiable by any method. Third, we prove the proposed calculus to be complete for the same task.
Author Information
Amin Jaber (Purdue University)
Adele Ribeiro (Phillips-Universität Marburg)
Jiji Zhang (Hong Kong Baptist University)
Elias Bareinboim (Columbia University)
More from the Same Authors
-
2021 Spotlight: Double Machine Learning Density Estimation for Local Treatment Effects with Instruments »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2022 Panel: Panel 5A-2: Causal Identification under… & Markovian Interference in… »
Andrew Zheng · Amin Jaber -
2022 Poster: Online Reinforcement Learning for Mixed Policy Scopes »
Junzhe Zhang · Elias Bareinboim -
2022 Poster: Finding and Listing Front-door Adjustment Sets »
Hyunchai Jeong · Jin Tian · Elias Bareinboim -
2021 : Panel Discussion »
Elias Bareinboim · Mark van der Laan · Claire Vernade -
2021 : TBD (Elias Bareibnboim) »
Elias Bareinboim -
2021 : Invited Talk: Causality and Fairness »
Elias Bareinboim -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2021 Oral: Sequential Causal Imitation Learning with Unobserved Confounders »
Daniel Kumor · Junzhe Zhang · Elias Bareinboim -
2021 Poster: Causal Identification with Matrix Equations »
Sanghack Lee · Elias Bareinboim -
2021 Poster: Nested Counterfactual Identification from Arbitrary Surrogate Experiments »
Juan Correa · Sanghack Lee · Elias Bareinboim -
2021 Poster: Sequential Causal Imitation Learning with Unobserved Confounders »
Daniel Kumor · Junzhe Zhang · Elias Bareinboim -
2021 Poster: The Causal-Neural Connection: Expressiveness, Learnability, and Inference »
Kevin Xia · Kai-Zhan Lee · Yoshua Bengio · Elias Bareinboim -
2021 Poster: Double Machine Learning Density Estimation for Local Treatment Effects with Instruments »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2021 Oral: Causal Identification with Matrix Equations »
Sanghack Lee · Elias Bareinboim -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: Characterizing Optimal Mixed Policies: Where to Intervene and What to Observe »
Sanghack Lee · Elias Bareinboim -
2020 Poster: Causal Discovery from Soft Interventions with Unknown Targets: Characterization and Learning »
Amin Jaber · Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2020 Poster: Causal Imitation Learning With Unobserved Confounders »
Junzhe Zhang · Daniel Kumor · Elias Bareinboim -
2020 Poster: General Transportability of Soft Interventions: Completeness Results »
Juan Correa · Elias Bareinboim -
2020 Poster: Learning Causal Effects via Weighted Empirical Risk Minimization »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2020 Oral: Causal Imitation Learning With Unobserved Confounders »
Junzhe Zhang · Daniel Kumor · Elias Bareinboim -
2019 Poster: Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions »
Murat Kocaoglu · Amin Jaber · Karthikeyan Shanmugam · Elias Bareinboim -
2019 Poster: Identification of Conditional Causal Effects under Markov Equivalence »
Amin Jaber · Jiji Zhang · Elias Bareinboim -
2019 Spotlight: Identification of Conditional Causal Effects under Markov Equivalence »
Amin Jaber · Jiji Zhang · Elias Bareinboim