Timezone: »
Vertical federated learning (VFL) is a privacy-preserving machine learning paradigm that can learn models from features distributed on different platforms in a privacy-preserving way. Since in real-world applications the data may contain bias on fairness-sensitive features (e.g., gender), VFL models may inherit bias from training data and become unfair for some user groups. However, existing fair machine learning methods usually rely on the centralized storage of fairness-sensitive features to achieve model fairness, which are usually inapplicable in federated scenarios. In this paper, we propose a fair vertical federated learning framework (FairVFL), which can improve the fairness of VFL models. The core idea of FairVFL is to learn unified and fair representations of samples based on the decentralized feature fields in a privacy-preserving way. Specifically, each platform with fairness-insensitive features first learns local data representations from local features. Then, these local representations are uploaded to a server and aggregated into a unified representation for the target task. In order to learn a fair unified representation, we send it to each platform storing fairness-sensitive features and apply adversarial learning to remove bias from the unified representation inherited from the biased data. Moreover, for protecting user privacy, we further propose a contrastive adversarial learning method to remove private information from the unified representation in server before sending it to the platforms keeping fairness-sensitive features. Experiments on three real-world datasets validate that our method can effectively improve model fairness with user privacy well-protected.
Author Information
Tao Qi (Tsinghua University, Tsinghua University)
Fangzhao Wu
Chuhan Wu (Tsinghua University)
Lingjuan Lyu (Sony AI)
Tong Xu (University of Science and Technology of China)
Hao Liao (Shenzhen University)
Zhongliang Yang (Tsinghua University, Tsinghua University)
Yongfeng Huang (Tsinghua University, Tsinghua University)
Xing Xie (Microsoft Research Asia)
More from the Same Authors
-
2022 Poster: CalFAT: Calibrated Federated Adversarial Training with Label Skewness »
Chen Chen · Yuchen Liu · Xingjun Ma · Lingjuan Lyu -
2022 : MocoSFL: enabling cross-client collaborative self-supervised learning »
Jingtao Li · Lingjuan Lyu · Daisuke Iso · Chaitali Chakrabarti · Michael Spranger -
2023 Poster: Towards Personalized Federated Learning via Heterogeneous Model Reassembly »
Jiaqi Wang · Xingyi Yang · Suhan Cui · Liwei Che · Lingjuan Lyu · Dongkuan (DK) Xu · Fenglong Ma -
2023 Poster: Cross-links Matter for Link Prediction: Rethinking the Debiased GNN from a Data Perspective »
Zihan Luo · Jianxun Lian · Hong Huang · Xiran Song · Xing Xie · Hai Jin -
2023 Poster: Is Heterogeneity Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning »
Yue Tan · Chen Chen · Weiming Zhuang · Xin Dong · Lingjuan Lyu · Guodong Long -
2023 Poster: Bayesian Active Causal Discovery with Multi-Fidelity Experiments »
Zeyu Zhang · Chaozhuo Li · Xu Chen · Xing Xie -
2023 Poster: Where Did I Come From? Origin Attribution of AI-Generated Images »
Zhenting Wang · Chen Chen · Yi Zeng · Lingjuan Lyu · Shiqing Ma -
2023 Poster: Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception? »
Xiaoxiao Sun · Nidham Gazagnadou · Vivek Sharma · Lingjuan Lyu · Hongdong Li · Liang Zheng -
2023 Poster: Model-enhanced Vector Index »
Hailin Zhang · Yujing Wang · Qi Chen · Ruiheng Chang · Ting Zhang · Ziming Miao · Yingyan Hou · Yang Ding · Xupeng Miao · Haonan Wang · Bochen Pang · Yuefeng Zhan · Hao Sun · Weiwei Deng · Qi Zhang · Fan Yang · Xing Xie · Mao Yang · Bin CUI -
2023 Poster: V-InFoR: A Robust Graph Neural Networks Explainer for Structurally Corrupted Graphs »
Jun Yin · Senzhang Wang · Chaozhuo Li · Xing Xie · Jianxin Wang -
2023 Poster: UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition »
Yuyuan Li · Chaochao Chen · Yizhao Zhang · Weiming Liu · Lingjuan Lyu · Xiaolin Zheng · Dan Meng · Jun Wang -
2023 Poster: A Comprehensive Study on Text-attributed Graphs: Benchmarking and Rethinking »
Hao Yan · Chaozhuo Li · Ruosong Long · Chao Yan · Jianan Zhao · Wenwen Zhuang · Jun Yin · Peiyan Zhang · Weihao Han · Hao Sun · Weiwei Deng · Qi Zhang · Lichao Sun · Xing Xie · Senzhang Wang -
2022 Poster: A Neural Corpus Indexer for Document Retrieval »
Yujing Wang · Yingyan Hou · Haonan Wang · Ziming Miao · Shibin Wu · Hao Sun · Qi Chen · Yuqing Xia · Chengmin Chi · Guoshuai Zhao · Zheng Liu · Xing Xie · Hao Sun · Weiwei Deng · Qi Zhang · Mao Yang -
2022 Poster: Prompt Certified Machine Unlearning with Randomized Gradient Smoothing and Quantization »
Zijie Zhang · Yang Zhou · Xin Zhao · Tianshi Che · Lingjuan Lyu -
2022 Poster: CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks »
Xuanli He · Qiongkai Xu · Yi Zeng · Lingjuan Lyu · Fangzhao Wu · Jiwei Li · Ruoxi Jia -
2022 Poster: USB: A Unified Semi-supervised Learning Benchmark for Classification »
Yidong Wang · Hao Chen · Yue Fan · Wang SUN · Ran Tao · Wenxin Hou · Renjie Wang · Linyi Yang · Zhi Zhou · Lan-Zhe Guo · Heli Qi · Zhen Wu · Yu-Feng Li · Satoshi Nakamura · Wei Ye · Marios Savvides · Bhiksha Raj · Takahiro Shinozaki · Bernt Schiele · Jindong Wang · Xing Xie · Yue Zhang -
2022 Poster: DENSE: Data-Free One-Shot Federated Learning »
Jie Zhang · Chen Chen · Bo Li · Lingjuan Lyu · Shuang Wu · Shouhong Ding · Chunhua Shen · Chao Wu -
2022 Poster: Self-explaining deep models with logic rule reasoning »
Seungeon Lee · Xiting Wang · Sungwon Han · Xiaoyuan Yi · Xing Xie · Meeyoung Cha -
2022 Poster: Outsourcing Training without Uploading Data via Efficient Collaborative Open-Source Sampling »
Junyuan Hong · Lingjuan Lyu · Jiayu Zhou · Michael Spranger -
2021 Poster: Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning »
Xinyi Xu · Lingjuan Lyu · Xingjun Ma · Chenglin Miao · Chuan Sheng Foo · Bryan Kian Hsiang Low -
2021 Poster: Anti-Backdoor Learning: Training Clean Models on Poisoned Data »
Yige Li · Xixiang Lyu · Nodens Koren · Lingjuan Lyu · Bo Li · Xingjun Ma -
2021 Poster: Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation »
Jinming Cui · Chaochao Chen · Lingjuan Lyu · Carl Yang · Wang Li -
2021 Poster: GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph »
Junhan Yang · Zheng Liu · Shitao Xiao · Chaozhuo Li · Defu Lian · Sanjay Agrawal · Amit Singh · Guangzhong Sun · Xing Xie -
2020 Poster: Sampling-Decomposable Generative Adversarial Recommender »
Binbin Jin · Defu Lian · Zheng Liu · Qi Liu · Jianhui Ma · Xing Xie · Enhong Chen