Timezone: »

 
Poster
Weakly supervised causal representation learning
Johann Brehmer · Pim de Haan · Phillip Lippe · Taco Cohen

Tue Nov 29 02:00 PM -- 04:00 PM (PST) @ Hall J #514

Learning high-level causal representations together with a causal model from unstructured low-level data such as pixels is impossible from observational data alone. We prove under mild assumptions that this representation is however identifiable in a weakly supervised setting. This involves a dataset with paired samples before and after random, unknown interventions, but no further labels. We then introduce implicit latent causal models, variational autoencoders that represent causal variables and causal structure without having to optimize an explicit discrete graph structure. On simple image data, including a novel dataset of simulated robotic manipulation, we demonstrate that such models can reliably identify the causal structure and disentangle causal variables.

Author Information

Johann Brehmer (Qualcomm AI Research)
Pim de Haan (University of Amsterdam, Qualcomm AI Research)
Phillip Lippe (University of Amsterdam)
Taco Cohen (Qualcomm AI Research)

Taco Cohen is a machine learning research scientist at Qualcomm AI Research in Amsterdam and a PhD student at the University of Amsterdam, supervised by prof. Max Welling. He was a co-founder of Scyfer, a company focussed on active deep learning, acquired by Qualcomm in 2017. He holds a BSc in theoretical computer science from Utrecht University and a MSc in artificial intelligence from the University of Amsterdam (both cum laude). His research is focussed on understanding and improving deep representation learning, in particular learning of equivariant and disentangled representations, data-efficient deep learning, learning on non-Euclidean domains, and applications of group representation theory and non-commutative harmonic analysis, as well as deep learning based source compression. He has done internships at Google Deepmind (working with Geoff Hinton) and OpenAI. He received the 2014 University of Amsterdam thesis prize, a Google PhD Fellowship, ICLR 2018 best paper award for “Spherical CNNs”, and was named one of 35 innovators under 35 in Europe by MIT in 2018.

More from the Same Authors