Timezone: »
In recent years, a number of reinforcement learning (RL) methods have been pro- posed to explore complex environments which differ across episodes. In this work, we show that the effectiveness of these methods critically relies on a count-based episodic term in their exploration bonus. As a result, despite their success in relatively simple, noise-free settings, these methods fall short in more realistic scenarios where the state space is vast and prone to noise. To address this limitation, we introduce Exploration via Elliptical Episodic Bonuses (E3B), a new method which extends count-based episodic bonuses to continuous state spaces and encourages an agent to explore states that are diverse under a learned embed- ding within each episode. The embedding is learned using an inverse dynamics model in order to capture controllable aspects of the environment. Our method sets a new state-of-the-art across 16 challenging tasks from the MiniHack suite, without requiring task-specific inductive biases. E3B also outperforms existing methods in reward-free exploration on Habitat, demonstrating that it can scale to high-dimensional pixel-based observations and realistic environments.
Author Information
Mikael Henaff (Facebook AI Research)
Roberta Raileanu (FAIR)
Minqi Jiang (UCL & FAIR)
Tim Rocktäschel (University College London, Facebook AI Research)
Tim is a Researcher at Facebook AI Research (FAIR) London, an Associate Professor at the Centre for Artificial Intelligence in the Department of Computer Science at University College London (UCL), and a Scholar of the European Laboratory for Learning and Intelligent Systems (ELLIS). Prior to that, he was a Postdoctoral Researcher in Reinforcement Learning at the University of Oxford, a Junior Research Fellow in Computer Science at Jesus College, and a Stipendiary Lecturer in Computer Science at Hertford College. Tim obtained his Ph.D. from UCL under the supervision of Sebastian Riedel, and he was awarded a Microsoft Research Ph.D. Scholarship in 2013 and a Google Ph.D. Fellowship in 2017. His work focuses on reinforcement learning in open-ended environments that require intrinsically motivated agents capable of transferring commonsense, world and domain knowledge in order to systematically generalize to novel situations.
More from the Same Authors
-
2021 : MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research »
Mikayel Samvelyan · Robert Kirk · Vitaly Kurin · Jack Parker-Holder · Minqi Jiang · Eric Hambro · Fabio Petroni · Heinrich Kuttler · Edward Grefenstette · Tim Rocktäschel -
2021 : Grounding Aleatoric Uncertainty in Unsupervised Environment Design »
Minqi Jiang · Michael Dennis · Jack Parker-Holder · Andrei Lupu · Heinrich Kuttler · Edward Grefenstette · Tim Rocktäschel · Jakob Foerster -
2021 : Imitation Learning from Pixel Observations for Continuous Control »
Samuel Cohen · Brandon Amos · Marc Deisenroth · Mikael Henaff · Eugene Vinitsky · Denis Yarats -
2021 : That Escalated Quickly: Compounding Complexity by Editing Levels at the Frontier of Agent Capabilities »
Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2021 : Return Dispersion as an Estimator of Learning Potential for Prioritized Level Replay »
Iryna Korshunova · Minqi Jiang · Jack Parker-Holder · Tim Rocktäschel · Edward Grefenstette -
2022 : Efficient Planning in a Compact Latent Action Space »
zhengyao Jiang · Tianjun Zhang · Michael Janner · Yueying (Lisa) Li · Tim Rocktäschel · Edward Grefenstette · Yuandong Tian -
2022 : Integrating Episodic and Global Bonuses for Efficient Exploration »
Mikael Henaff · Minqi Jiang · Roberta Raileanu -
2022 : Building a Subspace of Policies for Scalable Continual Learning »
Jean-Baptiste Gaya · Thang Long Doan · Lucas Page-Caccia · Laure Soulier · Ludovic Denoyer · Roberta Raileanu -
2022 : Uncertainty-Driven Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2022 : MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning »
Mikayel Samvelyan · Akbir Khan · Michael Dennis · Minqi Jiang · Jack Parker-Holder · Jakob Foerster · Roberta Raileanu · Tim Rocktäschel -
2023 Poster: On the Importance of Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2023 Poster: Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design »
Matthew T Jackson · Minqi Jiang · Jack Parker-Holder · Risto Vuorio · Chris Lu · Greg Farquhar · Shimon Whiteson · Jakob Foerster -
2023 Poster: Improving Language Plasticity via Pretraining with Active Forgetting »
Yihong Chen · Mikel Artetxe · Kelly Marchisio · Roberta Raileanu · David Adelani · Pontus Lars Erik Saito Stenetorp · Sebastian Riedel -
2023 Poster: Toolformer: Language Models Can Teach Themselves to Use Tools »
Timo Schick · Jane Dwivedi-Yu · Roberto Dessi · Roberta Raileanu · Maria Lomeli · Eric Hambro · Luke Zettlemoyer · Nicola Cancedda · Thomas Scialom -
2023 Poster: The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs »
Laura Ruis · Akbir Khan · Stella Biderman · Sara Hooker · Tim Rocktäschel · Edward Grefenstette -
2023 Oral: Toolformer: Language Models Can Teach Themselves to Use Tools »
Timo Schick · Jane Dwivedi-Yu · Roberto Dessi · Roberta Raileanu · Maria Lomeli · Eric Hambro · Luke Zettlemoyer · Nicola Cancedda · Thomas Scialom -
2023 Workshop: Socially Responsible Language Modelling Research (SoLaR) »
Usman Anwar · David Krueger · Samuel Bowman · Jakob Foerster · Su Lin Blodgett · Roberta Raileanu · Alan Chan · Katherine Lee · Laura Ruis · Robert Kirk · Yawen Duan · Xin Chen · Kawin Ethayarajh -
2023 Workshop: Agent Learning in Open-Endedness Workshop »
Minqi Jiang · Mikayel Samvelyan · Jack Parker-Holder · Mayalen Etcheverry · Yingchen Xu · Michael Dennis · Roberta Raileanu -
2022 Poster: Dungeons and Data: A Large-Scale NetHack Dataset »
Eric Hambro · Roberta Raileanu · Danielle Rothermel · Vegard Mella · Tim Rocktäschel · Heinrich Küttler · Naila Murray -
2022 Poster: Learning General World Models in a Handful of Reward-Free Deployments »
Yingchen Xu · Jack Parker-Holder · Aldo Pacchiano · Philip Ball · Oleh Rybkin · S Roberts · Tim Rocktäschel · Edward Grefenstette -
2022 Poster: Grounding Aleatoric Uncertainty for Unsupervised Environment Design »
Minqi Jiang · Michael Dennis · Jack Parker-Holder · Andrei Lupu · Heinrich Küttler · Edward Grefenstette · Tim Rocktäschel · Jakob Foerster -
2022 Poster: Improving Policy Learning via Language Dynamics Distillation »
Victor Zhong · Jesse Mu · Luke Zettlemoyer · Edward Grefenstette · Tim Rocktäschel -
2022 Poster: GriddlyJS: A Web IDE for Reinforcement Learning »
Christopher Bamford · Minqi Jiang · Mikayel Samvelyan · Tim Rocktäschel -
2022 Poster: Improving Intrinsic Exploration with Language Abstractions »
Jesse Mu · Victor Zhong · Roberta Raileanu · Minqi Jiang · Noah Goodman · Tim Rocktäschel · Edward Grefenstette -
2021 : The NetHack Challenge + Q&A »
Eric Hambro · Sharada Mohanty · Dipam Chakrabroty · Edward Grefenstette · Minqi Jiang · Robert Kirk · Vitaly Kurin · Heinrich Kuttler · Vegard Mella · Nantas Nardelli · Jack Parker-Holder · Roberta Raileanu · Tim Rocktäschel · Danielle Rothermel · Mikayel Samvelyan -
2021 Poster: Replay-Guided Adversarial Environment Design »
Minqi Jiang · Michael Dennis · Jack Parker-Holder · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2020 Poster: The NetHack Learning Environment »
Heinrich Küttler · Nantas Nardelli · Alexander Miller · Roberta Raileanu · Marco Selvatici · Edward Grefenstette · Tim Rocktäschel -
2019 Poster: Explicit Explore-Exploit Algorithms in Continuous State Spaces »
Mikael Henaff -
2018 : Poster Sessions and Lunch (Provided) »
Akira Utsumi · Alane Suhr · Ji Zhang · Ramon Sanabria · Kushal Kafle · Nicholas Chen · Seung Wook Kim · Aishwarya Agrawal · SRI HARSHA DUMPALA · Shikhar Murty · Pablo Azagra · Jean ROUAT · Alaaeldin Ali · · SUBBAREDDY OOTA · Angela Lin · Shruti Palaskar · Farley Lai · Amir Aly · Tingke Shen · Dianqi Li · Jianguo Zhang · Rita Kuznetsova · Jinwon An · Jean-Benoit Delbrouck · Tomasz Kornuta · Syed Ashar Javed · Christopher Davis · John Co-Reyes · Vasu Sharma · Sungwon Lyu · Ning Xie · Ankita Kalra · Huan Ling · Oleksandr Maksymets · Bhavana Mahendra Jain · Shun-Po Chuang · Sanyam Agarwal · Jerome Abdelnour · Yufei Feng · vincent albouy · Siddharth Karamcheti · Derek Doran · Roberta Raileanu · Jonathan Heek -
2018 Poster: e-SNLI: Natural Language Inference with Natural Language Explanations »
Oana-Maria Camburu · Tim Rocktäschel · Thomas Lukasiewicz · Phil Blunsom -
2017 : Contributed Talks 2 »
Roberta Raileanu · Satwik Kottur · Paul Grouchy -
2017 Workshop: 6th Workshop on Automated Knowledge Base Construction (AKBC) »
Jay Pujara · Dor Arad · Bhavana Dalvi Mishra · Tim Rocktäschel -
2017 Poster: End-to-End Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2017 Oral: End-to-end Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2016 Workshop: Neural Abstract Machines & Program Induction »
Matko Bošnjak · Nando de Freitas · Tejas Kulkarni · Arvind Neelakantan · Scott E Reed · Sebastian Riedel · Tim Rocktäschel