Timezone: »

 
Poster
KSD Aggregated Goodness-of-fit Test
Antonin Schrab · Benjamin Guedj · Arthur Gretton

Thu Dec 01 09:00 AM -- 11:00 AM (PST) @ Hall J #729

We investigate properties of goodness-of-fit tests based on the Kernel Stein Discrepancy (KSD). We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels. KSDAgg avoids splitting the data to perform kernel selection (which leads to a loss in test power), and rather maximises the test power over a collection of kernels. We provide theoretical guarantees on the power of KSDAgg: we show it achieves the smallest uniform separation rate of the collection, up to a logarithmic term. For compactly supported densities with bounded score function for the model, we derive the rate for KSDAgg over restricted Sobolev balls; this rate corresponds to the minimax optimal rate over unrestricted Sobolev balls, up to an iterated logarithmic term. KSDAgg can be computed exactly in practice as it relies either on a parametric bootstrap or on a wild bootstrap to estimate the quantiles and the level corrections. In particular, for the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary heuristics (such as median or standard deviation) or to data splitting. We find on both synthetic and real-world data that KSDAgg outperforms other state-of-the-art quadratic-time adaptive KSD-based goodness-of-fit testing procedures.

Author Information

Antonin Schrab (University College London, AI Centre & Gatsby Unit)
Antonin Schrab

Antonin Schrab is a PhD student at University College London who is jointly supervised by Benjamin Guedj at the UCL Centre for Artificial Intelligence and Inria London, and by Arthur Gretton at the Gatsby Computational Neuroscience Unit. His research interests include kernel methods, PAC-Bayes and generative models. He has recently focused on proving theoretical guarantees for kernel-based aggregated testing procedures.

Benjamin Guedj (Inria & University College London)

Benjamin Guedj is a tenured research scientist at Inria since 2014, affiliated to the Lille - Nord Europe research centre in France. He is also affiliated with the mathematics department of the University of Lille. Since 2018, he is a Principal Research Fellow at the Centre for Artificial Intelligence and Department of Computer Science at University College London. He is also a visiting researcher at The Alan Turing Institute. Since 2020, he is the founder and scientific director of The Inria London Programme, a strategic partnership between Inria and UCL as part of a France-UK scientific initiative. He obtained his Ph.D. in mathematics in 2013 from UPMC (Université Pierre & Marie Curie, France) under the supervision of Gérard Biau and Éric Moulines. Prior to that, he was a research assistant at DTU Compute (Denmark). His main line of research is in statistical machine learning, both from theoretical and algorithmic perspectives. He is primarily interested in the design, analysis and implementation of statistical machine learning methods for high dimensional problems, mainly using the PAC-Bayesian theory.

Arthur Gretton (Gatsby Unit, UCL)

Arthur Gretton is a Professor with the Gatsby Computational Neuroscience Unit at UCL. He received degrees in Physics and Systems Engineering from the Australian National University, and a PhD with Microsoft Research and the Signal Processing and Communications Laboratory at the University of Cambridge. He previously worked at the MPI for Biological Cybernetics, and at the Machine Learning Department, Carnegie Mellon University. Arthur's recent research interests in machine learning include the design and training of generative models, both implicit (e.g. GANs) and explicit (high/infinite dimensional exponential family models), nonparametric hypothesis testing, and kernel methods. He has been an associate editor at IEEE Transactions on Pattern Analysis and Machine Intelligence from 2009 to 2013, an Action Editor for JMLR since April 2013, an Area Chair for NeurIPS in 2008 and 2009, a Senior Area Chair for NeurIPS in 2018, an Area Chair for ICML in 2011 and 2012, and a member of the COLT Program Committee in 2013. Arthur was program chair for AISTATS in 2016 (with Christian Robert), tutorials chair for ICML 2018 (with Ruslan Salakhutdinov), workshops chair for ICML 2019 (with Honglak Lee), program chair for the Dali workshop in 2019 (with Krikamol Muandet and Shakir Mohammed), and co-organsier of the Machine Learning Summer School 2019 in London (with Marc Deisenroth).

More from the Same Authors