Timezone: »
Recent developments in monocular multi-object tracking have been very successful in tracking visible objects and bridging short occlusion gaps, mainly relying on data-driven appearance models. While significant advancements have been made in short-term tracking performance, bridging longer occlusion gaps remains elusive: state-of-the-art object trackers only bridge less than 10% of occlusions longer than three seconds. We suggest that the missing key is reasoning about future trajectories over a longer time horizon. Intuitively, the longer the occlusion gap, the larger the search space for possible associations. In this paper, we show that even a small yet diverse set of trajectory predictions for moving agents will significantly reduce this search space and thus improve long-term tracking robustness. Our experiments suggest that the crucial components of our approach are reasoning in a bird's-eye view space and generating a small yet diverse set of forecasts while accounting for their localization uncertainty. This way, we can advance state-of-the-art trackers on the MOTChallenge dataset and significantly improve their long-term tracking performance. This paper's source code and experimental data are available at https://github.com/dendorferpatrick/QuoVadis.
Author Information
Patrick Dendorfer (Dynamic Vision and Learning Group, Technical University Munich)
Vladimir Yugay (Department of Informatics, Technische Universität München)
Aljosa Osep (TU Munich)
Laura Leal-Taixé (TUM)
More from the Same Authors
-
2021 : STEP: Segmenting and Tracking Every Pixel »
Mark Weber · Jun Xie · Maxwell Collins · Yukun Zhu · Paul Voigtlaender · Hartwig Adam · Bradley Green · Andreas Geiger · Bastian Leibe · Daniel Cremers · Aljosa Osep · Laura Leal-Taixé · Liang-Chieh Chen -
2021 : DENETHOR: The DynamicEarthNET dataset for Harmonized, inter-Operable, analysis-Ready, daily crop monitoring from space »
Lukas Kondmann · Aysim Toker · Marc Rußwurm · Andrés Camero · Devis Peressuti · Grega Milcinski · Pierre-Philippe Mathieu · Nicolas Longepe · Timothy Davis · Giovanni Marchisio · Laura Leal-Taixé · Xiaoxiang Zhu -
2022 : PolarMOT: How Far Can Geometric Relations Take Us in 3D Multi-Object Tracking? »
Aleksandr Kim · Guillem Braso · Aljosa Osep · Laura Leal-Taixé -
2022 : PolarMOT: How far can geometric relations take us in 3D multi-object tracking? »
Aleksandr Kim · Guillem Braso · Aljosa Osep · Laura Leal-Taixé -
2022 Poster: Learning to Discover and Detect Objects »
Vladimir Fomenko · Ismail Elezi · Deva Ramanan · Laura Leal-Taixé · Aljosa Osep -
2022 Poster: The Unreasonable Effectiveness of Fully-Connected Layers for Low-Data Regimes »
Peter Kocsis · Peter Súkeník · Guillem Braso · Matthias Niessner · Laura Leal-Taixé · Ismail Elezi -
2020 Poster: Make One-Shot Video Object Segmentation Efficient Again »
Tim Meinhardt · Laura Leal-Taixé -
2020 Poster: Deep Shells: Unsupervised Shape Correspondence with Optimal Transport »
Marvin Eisenberger · Aysim Toker · Laura Leal-Taixé · Daniel Cremers