Timezone: »
Recommender systems (RS) have to select the top-N items from a massive item set. For the sake of efficient recommendation, RS usually represents user and item as latent embeddings, and relies on approximate nearest neighbour search (ANNs) to retrieve the recommendation result. Despite the reduction of running time, the representation learning is independent of ANNs index construction; thus, the two operations can be incompatible, which results in potential loss of recommendation accuracy. To overcome the above problem, we propose the Recommender Forest (a.k.a., RecForest), which jointly learns latent embedding and index for efficient and high-fidelity recommendation. RecForest consists of multiple k-ary trees, each of which is a partition of the item set via hierarchical balanced clustering such that each item is uniquely represented by a path from the root to a leaf. Given such a data structure, an encoder-decoder based routing network is developed: it first encodes the context, i.e., user information, into hidden states; then, leveraging a transformer-based decoder, it identifies the top-N items via beam search. Compared with the existing methods, RecForest brings in the following advantages: 1) the false partition of the boundary items can be effectively alleviated by the use of multiple trees; 2) the routing operation becomes much more accurate thanks to the powerful transformer decoder; 3) the tree parameters are shared across different tree levels, making the index to be extremely memory-efficient. The experimental studies are performed on five popular recommendation datasets: with a significantly simplified training cost, RecForest outperforms competitive baseline approaches in terms of both recommendation accuracy and efficiency.
Author Information
Chao Feng
Wuchao Li (University of Science and Technology of China)
Defu Lian (University of Science and Technology of China)
Zheng Liu (The Hong Kong University of Science and Technology)
Enhong Chen (University of Science and Technology of China)
More from the Same Authors
-
2022 Poster: DARE: Disentanglement-Augmented Rationale Extraction »
Linan Yue · Qi Liu · Yichao Du · Yanqing An · Li Wang · Enhong Chen -
2023 Poster: FairLISA: Fair User Modeling with Limited Sensitive Attributes Information »
zheng zhang · Qi Liu · Hao Jiang · Fei Wang · Yan Zhuang · Le Wu · Weibo Gao · Enhong Chen -
2023 Poster: A Bounded Ability Estimation for Computerized Adaptive Testing »
Yan Zhuang · Qi Liu · Guanhao Zhao · Zhenya Huang · Weizhe Huang · Zachary Pardos · Enhong Chen · Jinze Wu · Xin Li -
2023 Poster: Frequency-domain MLPs are More Effective Learners in Time Series Forecasting »
Kun Yi · Qi Zhang · Wei Fan · Hui He · Pengyang Wang · Shoujin Wang · Ning An · Defu Lian · Longbing Cao · Zhendong Niu -
2023 Poster: Knowledge Distillation for High Dimensional Search Index »
Zepu Lu · Jin Chen · Defu Lian · ZAIXI ZHANG · Yong Ge · Enhong Chen -
2023 Poster: Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective »
Zhiding Liu · Mingyue Cheng · Zhi Li · Zhenya Huang · Qi Liu · Yanhu Xie · Enhong Chen -
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yishi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: DARE: Disentanglement-Augmented Rationale Extraction »
Linan Yue · Qi Liu · Yichao Du · Yanqing An · Li Wang · Enhong Chen -
2022 Poster: A Neural Corpus Indexer for Document Retrieval »
Yujing Wang · Yingyan Hou · Haonan Wang · Ziming Miao · Shibin Wu · Hao Sun · Qi Chen · Yuqing Xia · Chengmin Chi · Guoshuai Zhao · Zheng Liu · Xing Xie · Hao Sun · Weiwei Deng · Qi Zhang · Mao Yang -
2022 Poster: Graph Convolution Network based Recommender Systems: Learning Guarantee and Item Mixture Powered Strategy »
Leyan Deng · Defu Lian · Chenwang Wu · Enhong Chen -
2022 Poster: Cache-Augmented Inbatch Importance Resampling for Training Recommender Retriever »
Jin Chen · Defu Lian · Yucheng Li · Baoyun Wang · Kai Zheng · Enhong Chen -
2021 Poster: GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph »
Junhan Yang · Zheng Liu · Shitao Xiao · Chaozhuo Li · Defu Lian · Sanjay Agrawal · Amit Singh · Guangzhong Sun · Xing Xie -
2021 Poster: Meta-learning with an Adaptive Task Scheduler »
Huaxiu Yao · Yu Wang · Ying Wei · Peilin Zhao · Mehrdad Mahdavi · Defu Lian · Chelsea Finn -
2020 Poster: Semi-Supervised Neural Architecture Search »
Renqian Luo · Xu Tan · Rui Wang · Tao Qin · Enhong Chen · Tie-Yan Liu -
2020 Poster: Incorporating BERT into Parallel Sequence Decoding with Adapters »
Junliang Guo · Zhirui Zhang · Linli Xu · Hao-Ran Wei · Boxing Chen · Enhong Chen -
2020 Poster: Sampling-Decomposable Generative Adversarial Recommender »
Binbin Jin · Defu Lian · Zheng Liu · Qi Liu · Jianhui Ma · Xing Xie · Enhong Chen -
2019 Poster: Efficient Pure Exploration in Adaptive Round Model »
Tianyuan Jin · Jieming SHI · Xiaokui Xiao · Enhong Chen -
2018 Poster: Neural Architecture Optimization »
Renqian Luo · Fei Tian · Tao Qin · Enhong Chen · Tie-Yan Liu -
2012 Poster: Image Denoising and Inpainting with Deep Neural Networks »
Junyuan Xie · Linli Xu · Enhong Chen