Timezone: »
Poster
The Unreasonable Effectiveness of Fully-Connected Layers for Low-Data Regimes
Peter Kocsis · Peter Súkeník · Guillem Braso · Matthias Niessner · Laura Leal-Taixé · Ismail Elezi
Convolutional neural networks were the standard for solving many computer vision tasks until recently, when Transformers of MLP-based architectures have started to show competitive performance. These architectures typically have a vast number of weights and need to be trained on massive datasets; hence, they are not suitable for their use in low-data regimes. In this work, we propose a simple yet effective framework to improve generalization from small amounts of data. We augment modern CNNs with fully-connected (FC) layers and show the massive impact this architectural change has in low-data regimes. We further present an online joint knowledge-distillation method to utilize the extra FC layers at train time but avoid them during test time. This allows us to improve the generalization of a CNN-based model without any increase in the number of weights at test time. We perform classification experiments for a large range of network backbones and several standard datasets on supervised learning and active learning. Our experiments significantly outperform the networks without fully-connected layers, reaching a relative improvement of up to $16\%$ validation accuracy in the supervised setting without adding any extra parameters during inference.
Author Information
Peter Kocsis (Department of Informatics, Technische Universität München)
Peter Súkeník (Institute of Science and Technology Austria)
Guillem Braso (Technical University Munich)
Matthias Niessner (Technical University of Munich)
Laura Leal-Taixé (TUM)
Ismail Elezi (Technical University of Munich)
More from the Same Authors
-
2021 : STEP: Segmenting and Tracking Every Pixel »
Mark Weber · Jun Xie · Maxwell Collins · Yukun Zhu · Paul Voigtlaender · Hartwig Adam · Bradley Green · Andreas Geiger · Bastian Leibe · Daniel Cremers · Aljosa Osep · Laura Leal-Taixé · Liang-Chieh Chen -
2021 : DENETHOR: The DynamicEarthNET dataset for Harmonized, inter-Operable, analysis-Ready, daily crop monitoring from space »
Lukas Kondmann · Aysim Toker · Marc Rußwurm · Andrés Camero · Devis Peressuti · Grega Milcinski · Pierre-Philippe Mathieu · Nicolas Longepe · Timothy Davis · Giovanni Marchisio · Laura Leal-Taixé · Xiaoxiang Zhu -
2022 : PolarMOT: How Far Can Geometric Relations Take Us in 3D Multi-Object Tracking? »
Aleksandr Kim · Guillem Braso · Aljosa Osep · Laura Leal-Taixé -
2022 : PolarMOT: How far can geometric relations take us in 3D multi-object tracking? »
Aleksandr Kim · Guillem Braso · Aljosa Osep · Laura Leal-Taixé -
2022 Spotlight: Lightning Talks 6A-3 »
Junyu Xie · Chengliang Zhong · Ali Ayub · Sravanti Addepalli · Harsh Rangwani · Jiapeng Tang · Yuchen Rao · Zhiying Jiang · Yuqi Wang · Xingzhe He · Gene Chou · Ilya Chugunov · Samyak Jain · Yuntao Chen · Weidi Xie · Sumukh K Aithal · Carter Fendley · Lev Markhasin · Yiqin Dai · Peixing You · Bastian Wandt · Yinyu Nie · Helge Rhodin · Felix Heide · Ji Xin · Angela Dai · Andrew Zisserman · Bi Wang · Xiaoxue Chen · Mayank Mishra · ZHAO-XIANG ZHANG · Venkatesh Babu R · Justus Thies · Ming Li · Hao Zhao · Venkatesh Babu R · Jimmy Lin · Fuchun Sun · Matthias Niessner · Guyue Zhou · Xiaodong Mu · Chuang Gan · Wenbing Huang -
2022 Spotlight: Neural Shape Deformation Priors »
Jiapeng Tang · Lev Markhasin · Bi Wang · Justus Thies · Matthias Niessner -
2022 Spotlight: 3DILG: Irregular Latent Grids for 3D Generative Modeling »
Biao Zhang · Matthias Niessner · Peter Wonka -
2022 Poster: Neural Shape Deformation Priors »
Jiapeng Tang · Lev Markhasin · Bi Wang · Justus Thies · Matthias Niessner -
2022 Poster: 3DILG: Irregular Latent Grids for 3D Generative Modeling »
Biao Zhang · Matthias Niessner · Peter Wonka -
2022 Poster: Learning to Discover and Detect Objects »
Vladimir Fomenko · Ismail Elezi · Deva Ramanan · Laura Leal-Taixé · Aljosa Osep -
2022 Poster: Quo Vadis: Is Trajectory Forecasting the Key Towards Long-Term Multi-Object Tracking? »
Patrick Dendorfer · Vladimir Yugay · Aljosa Osep · Laura Leal-Taixé -
2021 Poster: TransformerFusion: Monocular RGB Scene Reconstruction using Transformers »
Aljaz Bozic · Pablo Palafox · Justus Thies · Angela Dai · Matthias Niessner -
2021 Poster: Panoptic 3D Scene Reconstruction From a Single RGB Image »
Manuel Dahnert · Ji Hou · Matthias Niessner · Angela Dai -
2020 Poster: Neural Non-Rigid Tracking »
Aljaz Bozic · Pablo Palafox · Michael Zollhöfer · Angela Dai · Justus Thies · Matthias Niessner -
2020 Poster: Make One-Shot Video Object Segmentation Efficient Again »
Tim Meinhardt · Laura Leal-Taixé -
2020 Poster: Deep Shells: Unsupervised Shape Correspondence with Optimal Transport »
Marvin Eisenberger · Aysim Toker · Laura Leal-Taixé · Daniel Cremers