Timezone: »
Hamiltonian mechanics is a well-established theory for modeling the time evolution of systems with conserved quantities (called Hamiltonian), such as the total energy of the system. Recent works have parameterized the Hamiltonian by machine learning models (e.g., neural networks), allowing Hamiltonian dynamics to be obtained from state trajectories without explicit mathematical modeling. However, the performance of existing models is limited as we can observe only noisy and sparse trajectories in practice. This paper proposes a probabilistic model that can learn the dynamics of conservative or dissipative systems from noisy and sparse data. We introduce a Gaussian process that incorporates the symplectic geometric structure of Hamiltonian systems, which is used as a prior distribution for estimating Hamiltonian systems with additive dissipation. We then present its spectral representation, Symplectic Spectrum Gaussian Processes (SSGPs), for which we newly derive random Fourier features with symplectic structures. This allows us to construct an efficient variational inference algorithm for training the models while simulating the dynamics via ordinary differential equation solvers. Experiments on several physical systems show that SSGP offers excellent performance in predicting dynamics that follow the energy conservation or dissipation law from noisy and sparse data.
Author Information
Yusuke Tanaka (NTT)
Tomoharu Iwata (NTT)
naonori ueda (NTT Communication Science Labs. / RIKEN AIP)
More from the Same Authors
-
2022 Poster: Few-shot Learning for Feature Selection with Hilbert-Schmidt Independence Criterion »
Atsutoshi Kumagai · Tomoharu Iwata · Yasutoshi Ida · Yasuhiro Fujiwara -
2022 Poster: Sharing Knowledge for Meta-learning with Feature Descriptions »
Tomoharu Iwata · Atsutoshi Kumagai -
2021 Poster: Meta-Learning for Relative Density-Ratio Estimation »
Atsutoshi Kumagai · Tomoharu Iwata · Yasuhiro Fujiwara -
2021 Poster: Permuton-induced Chinese Restaurant Process »
Masahiro Nakano · Yasuhiro Fujiwara · Akisato Kimura · Takeshi Yamada · naonori ueda -
2021 Poster: Loss function based second-order Jensen inequality and its application to particle variational inference »
Futoshi Futami · Tomoharu Iwata · naonori ueda · Issei Sato · Masashi Sugiyama -
2019 Poster: Fully Neural Network based Model for General Temporal Point Processes »
Takahiro Omi · naonori ueda · Kazuyuki Aihara -
2019 Poster: Transfer Anomaly Detection by Inferring Latent Domain Representations »
Atsutoshi Kumagai · Tomoharu Iwata · Yasuhiro Fujiwara -
2019 Poster: Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs »
Yusuke Tanaka · Toshiyuki Tanaka · Tomoharu Iwata · Takeshi Kurashima · Maya Okawa · Yasunori Akagi · Hiroyuki Toda -
2016 Poster: Multi-view Anomaly Detection via Robust Probabilistic Latent Variable Models »
Tomoharu Iwata · Makoto Yamada -
2015 Poster: Cross-Domain Matching for Bag-of-Words Data via Kernel Embeddings of Latent Distributions »
Yuya Yoshikawa · Tomoharu Iwata · Hiroshi Sawada · Takeshi Yamada -
2014 Poster: Latent Support Measure Machines for Bag-of-Words Data Classification »
Yuya Yoshikawa · Tomoharu Iwata · Hiroshi Sawada