Timezone: »
Spiking Neural Networks (SNNs) are promising in neuromorphic hardware owing to utilizing spatio-temporal information and sparse event-driven signal processing. However, it is challenging to train SNNs due to the non-differentiable nature of the binary firing function. The surrogate gradients alleviate the training problem and make SNNs obtain comparable performance as Artificial Neural Networks (ANNs) with the same structure. Unfortunately, batch normalization, contributing to the success of ANNs, does not play a prominent role in SNNs because of the additional temporal dimension. To this end, we propose an effective normalization method called temporal effective batch normalization (TEBN). By rescaling the presynaptic inputs with different weights at every time-step, temporal distributions become smoother and uniform. Theoretical analysis shows that TEBN can be viewed as a smoother of SNN's optimization landscape and could help stabilize the gradient norm. Experimental results on both static and neuromorphic datasets show that SNNs with TEBN outperform the state-of-the-art accuracy with fewer time-steps, and achieve better robustness to hyper-parameters than other normalizations.
Author Information
Chaoteng Duan (Peking University)
Jianhao Ding (Peking University)
Shiyan Chen (Peking University)
Zhaofei Yu (Peking University)
Tiejun Huang (Peking University)
More from the Same Authors
-
2022 Poster: Adaptation Accelerating Sampling-based Bayesian Inference in Attractor Neural Networks »
Xingsi Dong · Zilong Ji · Tianhao Chu · Tiejun Huang · Wenhao Zhang · Si Wu -
2022 Poster: SNN-RAT: Robustness-enhanced Spiking Neural Network through Regularized Adversarial Training »
Jianhao Ding · Tong Bu · Zhaofei Yu · Tiejun Huang · Jian Liu -
2022 Poster: Training Spiking Neural Networks with Event-driven Backpropagation »
Yaoyu Zhu · Zhaofei Yu · Wei Fang · Xiaodong Xie · Tiejun Huang · Timothée Masquelier -
2022 Poster: Learning Optical Flow from Continuous Spike Streams »
Rui Zhao · Ruiqin Xiong · Jing Zhao · Zhaofei Yu · Xiaopeng Fan · Tiejun Huang -
2022 Spotlight: Training Spiking Neural Networks with Event-driven Backpropagation »
Yaoyu Zhu · Zhaofei Yu · Wei Fang · Xiaodong Xie · Tiejun Huang · Timothée Masquelier -
2022 Spotlight: Lightning Talks 2A-2 »
Harikrishnan N B · Jianhao Ding · Juha Harviainen · Yizhen Wang · Lue Tao · Oren Mangoubi · Tong Bu · Nisheeth Vishnoi · Mohannad Alhanahnah · Mikko Koivisto · Aditi Kathpalia · Lei Feng · Nithin Nagaraj · Hongxin Wei · Xiaozhu Meng · Petteri Kaski · Zhaofei Yu · Tiejun Huang · Ke Wang · Jinfeng Yi · Jian Liu · Sheng-Jun Huang · Mihai Christodorescu · Songcan Chen · Somesh Jha -
2022 Spotlight: SNN-RAT: Robustness-enhanced Spiking Neural Network through Regularized Adversarial Training »
Jianhao Ding · Tong Bu · Zhaofei Yu · Tiejun Huang · Jian Liu -
2022 Poster: Oscillatory Tracking of Continuous Attractor Neural Networks Account for Phase Precession and Procession of Hippocampal Place Cells »
Tianhao Chu · Zilong Ji · Junfeng Zuo · Wenhao Zhang · Tiejun Huang · Yuanyuan Mi · Si Wu -
2021 Poster: Noisy Adaptation Generates Lévy Flights in Attractor Neural Networks »
Xingsi Dong · Tianhao Chu · Tiejun Huang · Zilong Ji · Si Wu -
2021 Poster: Deep Residual Learning in Spiking Neural Networks »
Wei Fang · Zhaofei Yu · Yanqi Chen · Tiejun Huang · Timothée Masquelier · Yonghong Tian -
2020 Poster: UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging »
Chu Zhou · Hang Zhao · Jin Han · Chang Xu · Chao Xu · Tiejun Huang · Boxin Shi -
2020 Poster: Learning Individually Inferred Communication for Multi-Agent Cooperation »
gang Ding · Tiejun Huang · Zongqing Lu -
2020 Oral: Learning Individually Inferred Communication for Multi-Agent Cooperation »
gang Ding · Tiejun Huang · Zongqing Lu -
2019 Poster: Push-pull Feedback Implements Hierarchical Information Retrieval Efficiently »
Xiao Liu · Xiaolong Zou · Zilong Ji · Gengshuo Tian · Yuanyuan Mi · Tiejun Huang · K. Y. Michael Wong · Si Wu