Timezone: »
Paraphrase Identification is a fundamental task in Natural Language Processing. While much progress has been made in the field, the performance of many state-of- the-art models often suffer from distribution shift during inference time. We verify that a major source of this performance drop comes from biases introduced by negative examples. To overcome these biases, we propose in this paper to train two separate models, one that only utilizes the positive pairs and the other the negative pairs. This enables us the option of deciding how much to utilize the negative model, for which we introduce a perplexity based out-of-distribution metric that we show can effectively and automatically determine how much weight it should be given during inference. We support our findings with strong empirical results.
Author Information
Yifei Zhou (Department of Computer Science, Cornell University)
Renyu Li (Cornell University)
Hayden Housen (Cornell University)
Ser Nam Lim (Facebook AI)
More from the Same Authors
-
2021 : Mix-MaxEnt: Improving Accuracy and Uncertainty Estimates of Deterministic Neural Networks »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2022 : Hybrid RL: Using both offline and online data can make RL efficient »
Yuda Song · Yifei Zhou · Ayush Sekhari · J. Bagnell · Akshay Krishnamurthy · Wen Sun -
2023 Poster: Riemannian Residual Neural Networks »
Isay Katsman · Eric M Chen · Sidhanth Holalkere · Anna Asch · Aaron Lou · Ser Nam Lim · Christopher De Sa -
2023 Poster: Test-Time Distribution Normalization for Contrastively Learned Visual-language Models »
Yifei Zhou · Juntao Ren · Fengyu Li · Ramin Zabih · Ser Nam Lim -
2023 Poster: Video Dynamics Prior: An Internal Learning Approach for Robust Video Enhancements »
Gaurav Shrivastava · Ser Nam Lim · Abhinav Shrivastava -
2022 Poster: Using Mixup as a Regularizer Can Surprisingly Improve Accuracy & Out-of-Distribution Robustness »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2022 Poster: Spartan: Differentiable Sparsity via Regularized Transportation »
Kai Sheng Tai · Taipeng Tian · Ser Nam Lim -
2022 Poster: FedSR: A Simple and Effective Domain Generalization Method for Federated Learning »
A. Tuan Nguyen · Philip Torr · Ser Nam Lim -
2022 Poster: Few-Shot Fast-Adaptive Anomaly Detection »
Ze Wang · Yipin Zhou · Rui Wang · Tsung-Yu Lin · Ashish Shah · Ser Nam Lim -
2022 Poster: HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions »
Yongming Rao · Wenliang Zhao · Yansong Tang · Jie Zhou · Ser Nam Lim · Jiwen Lu -
2021 Poster: Learning to Ground Multi-Agent Communication with Autoencoders »
Toru Lin · Jacob Huh · Christopher Stauffer · Ser Nam Lim · Phillip Isola -
2021 Poster: Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods »
Derek Lim · Felix Hohne · Xiuyu Li · Sijia Linda Huang · Vaishnavi Gupta · Omkar Bhalerao · Ser Nam Lim -
2021 Poster: NeRV: Neural Representations for Videos »
Hao Chen · Bo He · Hanyu Wang · Yixuan Ren · Ser Nam Lim · Abhinav Shrivastava -
2021 Poster: Equivariant Manifold Flows »
Isay Katsman · Aaron Lou · Derek Lim · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2021 Poster: A Continuous Mapping For Augmentation Design »
Keyu Tian · Chen Lin · Ser Nam Lim · Wanli Ouyang · Puneet Dokania · Philip Torr -
2020 Poster: Better Set Representations For Relational Reasoning »
Qian Huang · Horace He · Abhay Singh · Yan Zhang · Ser Nam Lim · Austin Benson -
2020 Poster: Neural Manifold Ordinary Differential Equations »
Aaron Lou · Derek Lim · Isay Katsman · Leo Huang · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa