Timezone: »
Poster
Explaining Preferences with Shapley Values
Robert Hu · Siu Lun Chau · Jaime Ferrando Huertas · Dino Sejdinovic
While preference modelling is becoming one of the pillars of machine learning, the problem of preference explanation remains challenging and underexplored. In this paper, we propose \textsc{Pref-SHAP}, a Shapley value-based model explanation framework for pairwise comparison data. We derive the appropriate value functions for preference models and further extend the framework to model and explain \emph{context specific} information, such as the surface type in a tennis game. To demonstrate the utility of \textsc{Pref-SHAP}, we apply our method to a variety of synthetic and real-world datasets and show that richer and more insightful explanations can be obtained over the baseline.
Author Information
Robert Hu (Amazon)
Siu Lun Chau (University of Oxford)
Jaime Ferrando Huertas (Shaped.ai)
Dino Sejdinovic (University of Adelaide)
More from the Same Authors
-
2022 : Bayesian inference for aerosol vertical profiles »
Shahine Bouabid · Duncan Watson-Parris · Dino Sejdinovic -
2022 Poster: Giga-scale Kernel Matrix-Vector Multiplication on GPU »
Robert Hu · Siu Lun Chau · Dino Sejdinovic · Joan Glaunès -
2022 Poster: RKHS-SHAP: Shapley Values for Kernel Methods »
Siu Lun Chau · Robert Hu · Javier González · Dino Sejdinovic -
2022 Poster: Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning »
Veit David Wild · Robert Hu · Dino Sejdinovic -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Deconditional Downscaling with Gaussian Processes »
Siu Lun Chau · Shahine Bouabid · Dino Sejdinovic