Timezone: »
Poster
Inception Transformer
Chenyang Si · Weihao Yu · Pan Zhou · Yichen Zhou · Xinchao Wang · Shuicheng Yan
@
Recent studies show that transformer has strong capability of building long-range dependencies, yet is incompetent in capturing high frequencies that predominantly convey local information. To tackle this issue, we present a novel and general-purpose $\textit{Inception Transformer}$, or $\textit{iFormer}$ for short, that effectively learns comprehensive features with both high- and low-frequency information in visual data. Specifically, we design an Inception mixer to explicitly graft the advantages of convolution and max-pooling for capturing the high-frequency information to transformers. Different from recent hybrid frameworks, the Inception mixer brings greater efficiency through a channel splitting mechanism to adopt parallel convolution/max-pooling path and self-attention path as high- and low-frequency mixers, while having the flexibility to model discriminative information scattered within a wide frequency range. Considering that bottom layers play more roles in capturing high-frequency details while top layers more in modeling low-frequency global information, we further introduce a frequency ramp structure, i.e., gradually decreasing the dimensions fed to the high-frequency mixer and increasing those to the low-frequency mixer, which can effectively trade-off high- and low-frequency components across different layers. We benchmark the iFormer on a series of vision tasks, and showcase that it achieves impressive performance on image classification, COCO detection and ADE20K segmentation. For example, our iFormer-S hits the top-1 accuracy of 83.4% on ImageNet-1K, much higher than DeiT-S by 3.6%, and even slightly better than much bigger model Swin-B (83.3%) with only 1/4 parameters and 1/3 FLOPs. Code and models are released at https://github.com/sail-sg/iFormer.
Author Information
Chenyang Si (Sea AI Lab)
Weihao Yu (National University of Singapore)
Pan Zhou (SEA AI Lab)
Currently, I am a senior Research Scientist in Sea AI Lab of Sea group. Before, I worked in Salesforce as a research scientist during 2019 to 2021. I completed my Ph.D. degree in 2019 at the National University of Singapore (NUS), fortunately advised by Prof. Jiashi Feng and Prof. Shuicheng Yan. Before studying in NUS, I graduated from Peking University (PKU) in 2016 and during this period, I was fortunately directed by Prof. Zhouchen Lin and Prof. Chao Zhang in ZERO Lab. During the research period, I also work closely with Prof. Xiaotong Yuan. I also spend several wonderful months in 2018 at Georgia Tech as visiting student hosted by Prof. Huan Xu.
Yichen Zhou (Sea Group)
Xinchao Wang
Shuicheng Yan (Sea AI Lab)
More from the Same Authors
-
2020 : Task Similarity Aware Meta Learning: Theory-inspired Improvement on MAML »
Pan Zhou -
2021 Spotlight: A Theory-Driven Self-Labeling Refinement Method for Contrastive Representation Learning »
Pan Zhou · Caiming Xiong · Xiaotong Yuan · Steven Chu Hong Hoi -
2022 : Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models »
Xingyu Xie · Pan Zhou · Huan Li · Zhouchen Lin · Shuicheng Yan -
2022 : Win: Weight-Decay-Integrated Nesterov Acceleration for Adaptive Gradient Algorithms »
Pan Zhou · Xingyu Xie · Shuicheng Yan -
2022 : DIMENSION-REDUCED ADAPTIVE GRADIENT METHOD »
Jingyang Li · Pan Zhou · Kuangyu Ding · Kim-Chuan Toh · Yinyu Ye -
2022 : Boosting Offline Reinforcement Learning via Data Resampling »
Yang Yue · Bingyi Kang · Xiao Ma · Zhongwen Xu · Gao Huang · Shuicheng Yan -
2022 : Mutual Information Regularized Offline Reinforcement Learning »
Xiao Ma · Bingyi Kang · Zhongwen Xu · Min Lin · Shuicheng Yan -
2022 : HloEnv: A Graph Rewrite Environment for Deep Learning Compiler Optimization Research »
Chin Yang Oh · Kunhao Zheng · Bingyi Kang · Xinyi Wan · Zhongwen Xu · Shuicheng Yan · Min Lin · Yangzihao Wang -
2022 : Efficient Offline Policy Optimization with a Learned Model »
Zichen Liu · Siyi Li · Wee Sun Lee · Shuicheng Yan · Zhongwen Xu -
2022 : Visual Imitation Learning with Patch Rewards »
Minghuan Liu · Tairan He · Weinan Zhang · Shuicheng Yan · Zhongwen Xu -
2022 Spotlight: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning »
Dongze Lian · Daquan Zhou · Jiashi Feng · Xinchao Wang -
2022 Spotlight: Lightning Talks 6A-1 »
Ziyi Wang · Nian Liu · Yaming Yang · Qilong Wang · Yuanxin Liu · Zongxin Yang · Yizhao Gao · Yanchen Deng · Dongze Lian · Nanyi Fei · Ziyu Guan · Xiao Wang · Shufeng Kong · Xumin Yu · Daquan Zhou · Yi Yang · Fandong Meng · Mingze Gao · Caihua Liu · Yongming Rao · Zheng Lin · Haoyu Lu · Zhe Wang · Jiashi Feng · Zhaolin Zhang · Deyu Bo · Xinchao Wang · Chuan Shi · Jiangnan Li · Jiangtao Xie · Jie Zhou · Zhiwu Lu · Wei Zhao · Bo An · Jiwen Lu · Peihua Li · Jian Pei · Hao Jiang · Cai Xu · Peng Fu · Qinghua Hu · Yijie Li · Weigang Lu · Yanan Cao · Jianbin Huang · Weiping Wang · Zhao Cao · Jie Zhou -
2022 Spotlight: Dataset Distillation via Factorization »
Songhua Liu · Kai Wang · Xingyi Yang · Jingwen Ye · Xinchao Wang -
2022 Spotlight: Inception Transformer »
Chenyang Si · Weihao Yu · Pan Zhou · Yichen Zhou · Xinchao Wang · Shuicheng Yan -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Training Spiking Neural Networks with Local Tandem Learning »
Qu Yang · Jibin Wu · Malu Zhang · Yansong Chua · Xinchao Wang · Haizhou Li -
2022 Poster: Dataset Distillation via Factorization »
Songhua Liu · Kai Wang · Xingyi Yang · Jingwen Ye · Xinchao Wang -
2022 Poster: Deep Model Reassembly »
Xingyi Yang · Daquan Zhou · Songhua Liu · Jingwen Ye · Xinchao Wang -
2022 Poster: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning »
Dongze Lian · Daquan Zhou · Jiashi Feng · Xinchao Wang -
2022 Poster: EnvPool: A Highly Parallel Reinforcement Learning Environment Execution Engine »
Jiayi Weng · Min Lin · Shengyi Huang · Bo Liu · Denys Makoviichuk · Viktor Makoviychuk · Zichen Liu · Yufan Song · Ting Luo · Yukun Jiang · Zhongwen Xu · Shuicheng Yan -
2021 Poster: Towards Understanding Why Lookahead Generalizes Better Than SGD and Beyond »
Pan Zhou · Hanshu Yan · Xiaotong Yuan · Jiashi Feng · Shuicheng Yan -
2021 Poster: A Theory-Driven Self-Labeling Refinement Method for Contrastive Representation Learning »
Pan Zhou · Caiming Xiong · Xiaotong Yuan · Steven Chu Hong Hoi -
2020 Poster: Towards Theoretically Understanding Why Sgd Generalizes Better Than Adam in Deep Learning »
Pan Zhou · Jiashi Feng · Chao Ma · Caiming Xiong · Steven Chu Hong Hoi · Weinan E -
2020 Poster: Theory-Inspired Path-Regularized Differential Network Architecture Search »
Pan Zhou · Caiming Xiong · Richard Socher · Steven Chu Hong Hoi -
2020 Oral: Theory-Inspired Path-Regularized Differential Network Architecture Search »
Pan Zhou · Caiming Xiong · Richard Socher · Steven Chu Hong Hoi -
2020 Poster: Improving GAN Training with Probability Ratio Clipping and Sample Reweighting »
Yue Wu · Pan Zhou · Andrew Wilson · Eric Xing · Zhiting Hu -
2020 Poster: ConvBERT: Improving BERT with Span-based Dynamic Convolution »
Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan -
2020 Spotlight: ConvBERT: Improving BERT with Span-based Dynamic Convolution »
Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan -
2019 Poster: Efficient Meta Learning via Minibatch Proximal Update »
Pan Zhou · Xiaotong Yuan · Huan Xu · Shuicheng Yan · Jiashi Feng -
2019 Poster: Heterogeneous Graph Learning for Visual Commonsense Reasoning »
Weijiang Yu · Jingwen Zhou · Weihao Yu · Xiaodan Liang · Nong Xiao -
2019 Spotlight: Heterogeneous Graph Learning for Visual Commonsense Reasoning »
Weijiang Yu · Jingwen Zhou · Weihao Yu · Xiaodan Liang · Nong Xiao -
2019 Spotlight: Efficient Meta Learning via Minibatch Proximal Update »
Pan Zhou · Xiaotong Yuan · Huan Xu · Shuicheng Yan · Jiashi Feng -
2018 Poster: New Insight into Hybrid Stochastic Gradient Descent: Beyond With-Replacement Sampling and Convexity »
Pan Zhou · Xiaotong Yuan · Jiashi Feng -
2018 Poster: Efficient Stochastic Gradient Hard Thresholding »
Pan Zhou · Xiaotong Yuan · Jiashi Feng