Timezone: »
Mapping between discrete and continuous distributions is a difficult task and many have had to resort to heuristical approaches. We propose a tessellation-based approach that directly learns quantization boundaries in a continuous space, complete with exact likelihood evaluations. This is done through constructing normalizing flows on convex polytopes parameterized using a simple homeomorphism with an efficient log determinant Jacobian. We explore this approach in two application settings, mapping from discrete to continuous and vice versa. Firstly, a Voronoi dequantization allows automatically learning quantization boundaries in a multidimensional space. The location of boundaries and distances between regions can encode useful structural relations between the quantized discrete values. Secondly, a Voronoi mixture model has near-constant computation cost for likelihood evaluation regardless of the number of mixture components. Empirically, we show improvements over existing methods across a range of structured data modalities.
Author Information
Ricky T. Q. Chen (FAIR Labs, Meta AI)
Brandon Amos (Facebook AI Research)
Maximilian Nickel (Facebook)
More from the Same Authors
-
2022 : Meta Optimal Transport »
Brandon Amos · Samuel Cohen · Giulia Luise · Ievgen Redko -
2022 Poster: Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world »
Eugene Vinitsky · Nathan LichtlĂ© · Xiaomeng Yang · Brandon Amos · Jakob Foerster -
2022 Poster: Neural Conservation Laws: A Divergence-Free Perspective »
Jack Richter-Powell · Yaron Lipman · Ricky T. Q. Chen -
2022 Poster: Theseus: A Library for Differentiable Nonlinear Optimization »
Luis Pineda · Taosha Fan · Maurizio Monge · Shobha Venkataraman · Paloma Sodhi · Ricky T. Q. Chen · Joseph Ortiz · Daniel DeTone · Austin Wang · Stuart Anderson · Jing Dong · Brandon Amos · Mustafa Mukadam -
2020 : Ricky T. Q. Chen---Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering »
Tian Qi Chen -
2020 Workshop: Learning Meets Combinatorial Algorithms »
Marin Vlastelica · Jialin Song · Aaron Ferber · Brandon Amos · Georg Martius · Bistra Dilkina · Yisong Yue -
2019 Poster: Differentiable Convex Optimization Layers »
Akshay Agrawal · Brandon Amos · Shane Barratt · Stephen Boyd · Steven Diamond · J. Zico Kolter -
2019 Poster: Latent Ordinary Differential Equations for Irregularly-Sampled Time Series »
Yulia Rubanova · Tian Qi Chen · David Duvenaud -
2019 Poster: Residual Flows for Invertible Generative Modeling »
Tian Qi Chen · Jens Behrmann · David Duvenaud · Joern-Henrik Jacobsen -
2019 Spotlight: Residual Flows for Invertible Generative Modeling »
Tian Qi Chen · Jens Behrmann · David Duvenaud · Joern-Henrik Jacobsen -
2019 Poster: Neural Networks with Cheap Differential Operators »
Tian Qi Chen · David Duvenaud -
2019 Spotlight: Neural Networks with Cheap Differential Operators »
Tian Qi Chen · David Duvenaud -
2018 Poster: Isolating Sources of Disentanglement in Variational Autoencoders »
Tian Qi Chen · Xuechen (Chen) Li · Roger Grosse · David Duvenaud -
2018 Oral: Isolating Sources of Disentanglement in Variational Autoencoders »
Tian Qi Chen · Xuechen (Chen) Li · Roger Grosse · David Duvenaud -
2018 Poster: Neural Ordinary Differential Equations »
Tian Qi Chen · Yulia Rubanova · Jesse Bettencourt · David Duvenaud -
2018 Oral: Neural Ordinary Differential Equations »
Tian Qi Chen · Yulia Rubanova · Jesse Bettencourt · David Duvenaud