Timezone: »
Negative-free contrastive learning methods have attracted a lot of attention with simplicity and impressive performances for large-scale pretraining. However, its disentanglement property remains unexplored. In this paper, we examine negative-free contrastive learning methods to study the disentanglement property empirically. We find that existing disentanglement metrics fail to make meaningful measurements for high-dimensional representation models, so we propose a new disentanglement metric based on Mutual Information between latent representations and data factors. With this proposed metric, we benchmark the disentanglement property of negative-free contrastive learning on both popular synthetic datasets and a real-world dataset CelebA. Our study shows that the investigated methods can learn a well-disentangled subset of representation. As far as we know, we are the first to extend the study of disentangled representation learning to high-dimensional representation space and introduce negative-free contrastive learning methods into this area. The source code of this paper is available at https://github.com/noahcao/disentanglementlibmed.
Author Information
Jinkun Cao (Carnegie Mellon University)
Ruiqian Nai (Tsinghua University, Tsinghua University)
Qing Yang (Shanghai Jiao Tong University)
Jialei Huang (Tsinghua University, Tsinghua University)
Yang Gao (Tsinghua University)
More from the Same Authors
-
2021 : Maximum Entropy Population Based Training for Zero-Shot Human-AI Coordination »
Rui Zhao · Jinming Song · Hu Haifeng · Yang Gao · Yi Wu · Zhongqian Sun · Wei Yang -
2022 Poster: Pre-Trained Image Encoder for Generalizable Visual Reinforcement Learning »
Zhecheng Yuan · Zhengrong Xue · Bo Yuan · Xueqian Wang · YI WU · Yang Gao · Huazhe Xu -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: Pre-Trained Image Encoder for Generalizable Visual Reinforcement Learning »
Zhecheng Yuan · Zhengrong Xue · Bo Yuan · Xueqian Wang · YI WU · Yang Gao · Huazhe Xu -
2022 Poster: Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions »
Weirui Ye · Pieter Abbeel · Yang Gao -
2022 Poster: Planning for Sample Efficient Imitation Learning »
Zhao-Heng Yin · Weirui Ye · Qifeng Chen · Yang Gao -
2021 Poster: Mastering Atari Games with Limited Data »
Weirui Ye · Shaohuai Liu · Thanard Kurutach · Pieter Abbeel · Yang Gao -
2021 Poster: Reinforcement Learning with Latent Flow »
Wenling Shang · Xiaofei Wang · Aravind Srinivas · Aravind Rajeswaran · Yang Gao · Pieter Abbeel · Misha Laskin -
2020 Poster: Fighting Copycat Agents in Behavioral Cloning from Observation Histories »
Chuan Wen · Jierui Lin · Trevor Darrell · Dinesh Jayaraman · Yang Gao