Timezone: »
Incremental or continual learning has been extensively studied for image classification tasks to alleviate catastrophic forgetting, a phenomenon in which earlier learned knowledge is forgotten when learning new concepts. For class incremental semantic segmentation, such a phenomenon often becomes much worse due to the semantic shift of the background class, \ie, some concepts learned at previous stages are assigned to the background class at the current training stage, therefore, significantly reducing the performance of these old concepts. To address this issue, we propose a simple yet effective method in this paper, named Mining unseen Classes via Regional Objectness (MicroSeg). Our MicroSeg is based on the assumption that \emph{background regions with strong objectness possibly belong to those concepts in the historical or future stages}. Therefore, to avoid forgetting old knowledge at the current training stage, our MicroSeg first splits the given image into hundreds of segment proposals with a proposal generator. Those segment proposals with strong objectness from the background are then clustered and assigned new defined labels during the optimization. In this way, the distribution characterizes of old concepts in the feature space could be better perceived, relieving the catastrophic forgetting caused by the semantic shift of the background class accordingly. We conduct extensive experiments on Pascal VOC and ADE20K, and competitive results well demonstrate the effectiveness of our MicroSeg. Code is available at \href{https://github.com/zkzhang98/MicroSeg}{\textcolor{orange}{\texttt{https://github.com/zkzhang98/MicroSeg}}}.
Author Information
Zekang Zhang (Beijing Institute of Technology)
Guangyu Gao (Beijing Institute of Technology)
Zhiyuan Fang (Beijing Institute of Technology)
Jianbo Jiao (University of Oxford)
Yunchao Wei
More from the Same Authors
-
2021 : Explainability of Self-Supervised RepresentationLearning for Medical Ultrasound Video »
Kangning Zhang · Jianbo Jiao · Alison Noble -
2022 Spotlight: Lightning Talks 3B-4 »
Guanghu Yuan · Yijing Liu · Li Yang · Yongri Piao · Zekang Zhang · Yaxin Xiao · Lin Chen · Hong Chang · Fajie Yuan · Guangyu Gao · Hong Chang · Qinxian Liu · Zhixiang Wei · Qingqing Ye · Chenyang Lu · Jian Meng · Haibo Hu · Xin Jin · Yudong Li · Miao Zhang · Zhiyuan Fang · Jae-sun Seo · Bingpeng MA · Jian-Wei Zhang · Shiguang Shan · Haozhe Feng · Huaian Chen · Deliang Fan · Huadi Zheng · Jianbo Jiao · Huchuan Lu · Beibei Kong · Miao Zheng · Chengfang Fang · Shujie Li · Zhongwei Wang · Yunchao Wei · Xilin Chen · Jie Shi · Kai Chen · Zihan Zhou · Lei Chen · Yi Jin · Wei Chen · Min Yang · Chenyun YU · Bo Hu · Zang Li · Yu Xu · Xiaohu Qie -
2022 Spotlight: Mining Unseen Classes via Regional Objectness: A Simple Baseline for Incremental Segmentation »
Zekang Zhang · Guangyu Gao · Zhiyuan Fang · Jianbo Jiao · Yunchao Wei -
2021 Poster: Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning »
Chongjian GE · Youwei Liang · YIBING SONG · Jianbo Jiao · Jue Wang · Ping Luo