Timezone: »

 
Poster
Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks
Yijing Liu · Qinxian Liu · Jian-Wei Zhang · Haozhe Feng · Zhongwei Wang · Zihan Zhou · Wei Chen

Wed Nov 30 02:00 PM -- 04:00 PM (PST) @ Hall J #629

Modeling multivariate time series (MTS) is critical in modern intelligent systems. The accurate forecast of MTS data is still challenging due to the complicated latent variable correlation. Recent works apply the Graph Neural Networks (GNNs) to the task, with the basic idea of representing the correlation as a static graph. However, predicting with a static graph causes significant bias because the correlation is time-varying in the real-world MTS data. Besides, there is no gap analysis between the actual correlation and the learned one in their works to validate the effectiveness. This paper proposes a temporal polynomial graph neural network (TPGNN) for accurate MTS forecasting, which represents the dynamic variable correlation as a temporal matrix polynomial in two steps. First, we capture the overall correlation with a static matrix basis. Then, we use a set of time-varying coefficients and the matrix basis to construct a matrix polynomial for each time step. The constructed result empirically captures the precise dynamic correlation of six synthetic MTS datasets generated by a non-repeating random walk model. Moreover, the theoretical analysis shows that TPGNN can achieve perfect approximation under a commutative condition. We conduct extensive experiments on two traffic datasets with prior structure and four benchmark datasets. The results indicate that TPGNN achieves the state-of-the-art on both short-term and long-term MTS forecastings.

Author Information

Yijing Liu (State Key Lab of CAD&CG, China)
Qinxian Liu (Zhejiang University)
Jian-Wei Zhang
Haozhe Feng (State Key Lab of CAD&CG, Zhejiang University)
Zhongwei Wang (Zhejiang University)
Zihan Zhou (Zhejiang University)
Wei Chen (State key laboratory of CAD&CG)

More from the Same Authors

  • 2022 Spotlight: Lightning Talks 6B-3 »
    Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu
  • 2022 Spotlight: Feature-Proxy Transformer for Few-Shot Segmentation »
    Jian-Wei Zhang · Yifan Sun · Yi Yang · Wei Chen
  • 2022 Spotlight: Lightning Talks 3B-4 »
    Guanghu Yuan · Yijing Liu · Li Yang · Yongri Piao · Zekang Zhang · Yaxin Xiao · Lin Chen · Hong Chang · Fajie Yuan · Guangyu Gao · Hong Chang · Qinxian Liu · Zhixiang Wei · Qingqing Ye · Chenyang Lu · Jian Meng · Haibo Hu · Xin Jin · Yudong Li · Miao Zhang · Zhiyuan Fang · Jae-sun Seo · Bingpeng MA · Jian-Wei Zhang · Shiguang Shan · Haozhe Feng · Huaian Chen · Deliang Fan · Huadi Zheng · Jianbo Jiao · Huchuan Lu · Beibei Kong · Miao Zheng · Chengfang Fang · Shujie Li · Zhongwei Wang · Yunchao Wei · Xilin Chen · Jie Shi · Kai Chen · Zihan Zhou · Lei Chen · Yi Jin · Wei Chen · Min Yang · Chenyun YU · Bo Hu · Zang Li · Yu Xu · Xiaohu Qie
  • 2022 Spotlight: Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks »
    Yijing Liu · Qinxian Liu · Jian-Wei Zhang · Haozhe Feng · Zhongwei Wang · Zihan Zhou · Wei Chen
  • 2022 Poster: Feature-Proxy Transformer for Few-Shot Segmentation »
    Jian-Wei Zhang · Yifan Sun · Yi Yang · Wei Chen