Timezone: »
Recently, tensor network (TN) decompositions have gained prominence in computer vision and contributed promising results to high-order data recovery tasks. However, current TN models are rather being developed towards more intricate structures to pursue incremental improvements, which instead leads to a dramatic increase in rank numbers, thus encountering laborious hyper-parameter selection, especially for higher-order cases. In this paper, we propose a novel TN decomposition, dubbed tensor wheel (TW) decomposition, in which a high-order tensor is represented by a set of latent factors mapped into a specific wheel topology. Such decomposition is constructed starting from analyzing the graph structure, aiming to more accurately characterize the complex interactions inside objectives while maintaining a lower hyper-parameter scale, theoretically alleviating the above deficiencies. Furthermore, to investigate the potentiality of TW decomposition, we provide its one numerical application, i.e., tensor completion (TC), yet develop an efficient proximal alternating minimization-based solving algorithm with guaranteed convergence. Experimental results elaborate that the proposed method is significantly superior to other tensor decomposition-based state-of-the-art methods on synthetic and real-world data, implying the merits of TW decomposition. The code is available at: https://github.com/zhongchengwu/code_TWDec.
Author Information
Zhong-Cheng Wu (University of Electronic Science and Technology of China)
Ting-Zhu Huang (School of Mathematical Sciences, University of Electronic Science and Technology of China)
Liang-Jian Deng (University of Electronic Science and Technology of China)
Hong-Xia Dou (Xihua University)
Deyu Meng (Xi'an Jiaotong University)
More from the Same Authors
-
2021 : Low-Rank Tensor Completion via Coupled Framelet Transform »
Jian-Li Wang · Ting-Zhu Huang · Xi-Le Zhao · Tai-Xiang Jiang · Michael Ng -
2021 : Fully-Connected Tensor Network Decomposition »
Yu-Bang Zheng · Ting-Zhu Huang · Xi-Le Zhao · Qibin Zhao · Tai-Xiang Jiang -
2023 Poster: Preconditioning Matters: Fast Global Convergence of Non-convex Matrix Factorization via Scaled Gradient Descent »
Xixi Jia · Hailin Wang · Jiangjun Peng · Xiangchu Feng · Deyu Meng -
2022 Spotlight: Deep Fourier Up-Sampling »
man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Deep Fourier Up-Sampling »
man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li -
2019 Poster: Variational Denoising Network: Toward Blind Noise Modeling and Removal »
Zongsheng Yue · Hongwei Yong · Qian Zhao · Deyu Meng · Lei Zhang -
2019 Poster: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting »
Jun Shu · Qi Xie · Lixuan Yi · Qian Zhao · Sanping Zhou · Zongben Xu · Deyu Meng