Timezone: »
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/.
Author Information
Jorge Quesada (Georgia Institute of Technology)
Lakshmi Sathidevi (Georgia Institute of Technology)
Ran Liu (Georgia Institute of Technology)
I am a 4th year Ph.D. student in the Machine Learning Program at Georgia Tech. I conduct my research in the Neural Data Science Lab advised by Prof. Eva Dyer. My research interests lie at the intersection of Machine (Deep) Learning, Computational Neuroscience, and Computer Vision.
Nauman Ahad (Georgia Institute of Technology)
Joy Jackson (University of Miami)
Mehdi Azabou (Georgia Institute of Technology)
Jingyun Xiao (Georgia Institute of Technology)
Christopher Liding (Georgia Institute of Technology)
Matthew Jin
Carolina Urzay (Georgia Institute of Technology)
William Gray-Roncal (Johns Hopkins University)
Erik Johnson (Johns Hopkins University Applied Physics Laboratory)
Eva Dyer (Georgia Institute of Technology)
More from the Same Authors
-
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 : Informing generative replay for continual learning with long-term memory formation in the fruit fly »
Brian Robinson · Justin Joyce · Raphael Norman-Tenazas · Gautam Vallabha · Erik Johnson -
2022 Poster: Seeing the forest and the tree: Building representations of both individual and collective dynamics with transformers »
Ran Liu · Mehdi Azabou · Max Dabagia · Jingyun Xiao · Eva Dyer -
2021 : Contributed talk 3 »
Mehdi Azabou -
2021 Oral: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer -
2021 Poster: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer -
2021 Poster: Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time »
Feng Zhu · Andrew Sedler · Harrison A Grier · Nauman Ahad · Mark Davenport · Matthew Kaufman · Andrea Giovannucci · Chethan Pandarinath -
2019 Poster: Hierarchical Optimal Transport for Multimodal Distribution Alignment »
John Lee · Max Dabagia · Eva Dyer · Christopher Rozell -
2017 : Closing Panel: Analyzing brain data from nano to macroscale »
William Gray Roncal · Eva Dyer -
2017 : Opening Remarks »
Eva Dyer · William Gray Roncal -
2017 Workshop: BigNeuro 2017: Analyzing brain data from nano to macroscale »
Eva Dyer · Gregory Kiar · William Gray Roncal · · Konrad P Koerding · Joshua T Vogelstein -
2016 : Eva Dyer »
Eva Dyer -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2015 Workshop: BigNeuro 2015: Making sense of big neural data »
Eva Dyer · Joshua T Vogelstein · Konrad Koerding · Jeremy Freeman · Andreas S. Tolias