Timezone: »
For the deployment of artificial intelligence (AI) in high risk settings, such as healthcare, methods that provide interpretability/explainability or allow fine-grained error analysis are critical. Many recent methods for interpretability/explainability and fine-grained error analysis use concepts, which are meta-labels which are semantically meaningful to humans. However, there are only a few datasets that include concept-level meta-labels and most of these meta-labels are relevant for natural images that do not require domain expertise. Previous densely annotated datasets in medicine focused on meta-labels that are relevant to a single disease such as osteoarthritis or melanoma. In dermatology, skin disease is described using an established clinical lexicon that allow clinicians to describe physical exam findings to one another. To provide the first medical dataset densely annotated by domain experts to provide annotations useful across multiple disease processes, we developed SkinCon: a skin disease dataset densely annotated by dermatologists. SkinCon includes 3230 images from the Fitzpatrick 17k skin disease dataset densely annotated with 48 clinical concepts, 22 of which have at least 50 images representing the concept. The concepts used were chosen by two dermatologists considering the clinical descriptor terms used to describe skin lesions. Examples include "plaque", "scale", and "erosion". These same concepts were also used to label 656 skin disease images from the Diverse Dermatology Images dataset, providing an additional external dataset with diverse skin tone representations. We review the potential applications for the SkinCon dataset, such as probing models, concept-based explanations, concept bottlenecks, error analysis, and slice discovery. Furthermore, we use SkinCon to demonstrate two of these use cases: debugging mistakes of an existing dermatology AI model with concepts and developing interpretable models with post-hoc concept bottleneck models.
Author Information
Roxana Daneshjou (Stanford)
Mert Yuksekgonul (Stanford University)
Zhuo Ran Cai (Stanford University)
Roberto Novoa (Stanford University)
James Zou (Stanford)
More from the Same Authors
-
2022 : Predicting Immune Escape with Pretrained Protein Language Model Embeddings »
Kyle Swanson · Howard Chang · James Zou -
2022 : Data-driven subgroup identification for linear regression »
Zachary Izzo · Ruishan Liu · James Zou -
2022 : Is Unsupervised Performance Estimation Impossible When Both Covariates and Labels shift? »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 : DrML: Diagnosing and Rectifying Vision Models using Language »
Yuhui Zhang · Jeff Z. HaoChen · Shih-Cheng Huang · Kuan-Chieh Wang · James Zou · Serena Yeung -
2022 : Provable Re-Identification Privacy »
Zachary Izzo · Jinsung Yoon · Sercan Arik · James Zou -
2022 : Recommendation for New Drugs with Limited Prescription Data »
Zhenbang Wu · Huaxiu Yao · Zhe Su · David Liebovitz · Lucas Glass · James Zou · Chelsea Finn · Jimeng Sun -
2022 : An Electrocardiogram-Based Risk Score for Cardiovascular Mortality »
John Hughes · David Ouyang · Pierre Elias · James Zou · Euan Ashley · Marco Perez -
2022 : An Electrocardiogram-Based Risk Score for Cardiovascular Mortality »
John Hughes · David Ouyang · Pierre Elias · James Zou · Euan Ashley · Marco Perez -
2022 Poster: Estimating and Explaining Model Performance When Both Covariates and Labels Shift »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Poster: HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions »
Lingjiao Chen · Zhihua Jin · Evan Sabri Eyuboglu · Christopher RĂ© · Matei Zaharia · James Zou -
2022 Poster: Uncalibrated Models Can Improve Human-AI Collaboration »
Kailas Vodrahalli · Tobias Gerstenberg · James Zou -
2022 Poster: C-Mixup: Improving Generalization in Regression »
Huaxiu Yao · Yiping Wang · Linjun Zhang · James Zou · Chelsea Finn -
2022 Poster: Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning »
Victor Weixin Liang · Yuhui Zhang · Yongchan Kwon · Serena Yeung · James Zou -
2022 Poster: WeightedSHAP: analyzing and improving Shapley based feature attributions »
Yongchan Kwon · James Zou -
2021 : Spotlight talks: new datasets and research finalists »
Roxana Daneshjou · Sharmita Dey · Sabri Boughorbel · TestMatt TestMcDermott · Daniel Gedon -
2021 Poster: Adversarial Training Helps Transfer Learning via Better Representations »
Zhun Deng · Linjun Zhang · Kailas Vodrahalli · Kenji Kawaguchi · James Zou -
2020 Session: Orals & Spotlights Track 02: COVID/Health/Bio Applications »
Tristan Naumann · James Zou -
2019 Poster: Making AI Forget You: Data Deletion in Machine Learning »
Antonio Ginart · Melody Guan · Gregory Valiant · James Zou -
2019 Spotlight: Making AI Forget You: Data Deletion in Machine Learning »
Antonio Ginart · Melody Guan · Gregory Valiant · James Zou -
2017 Workshop: Machine Learning in Computational Biology »
James Zou · Anshul Kundaje · Gerald Quon · Nicolo Fusi · Sara Mostafavi -
2017 Poster: NeuralFDR: Learning Discovery Thresholds from Hypothesis Features »
Fei Xia · Martin J Zhang · James Zou · David Tse