Timezone: »

 
Poster
StrokeRehab: A Benchmark Dataset for Sub-second Action Identification
Aakash Kaku · Kangning Liu · Avinash Parnandi · Haresh Rengaraj Rajamohan · Kannan Venkataramanan · Anita Venkatesan · Audre Wirtanen · Natasha Pandit · Heidi Schambra · Carlos Fernandez-Granda

Tue Nov 29 02:00 PM -- 04:00 PM (PST) @ Hall J #1016

Automatic action identification from video and kinematic data is an important machine learning problem with applications ranging from robotics to smart health. Most existing works focus on identifying coarse actions such as running, climbing, or cutting vegetables, which have relatively long durations and a complex series of motions. This is an important limitation for applications that require identification of more elemental motions at high temporal resolution. For example, in the rehabilitation of arm impairment after stroke, quantifying the training dose (number of repetitions) requires differentiating motions with sub-second durations. Our goal is to bridge this gap. To this end, we introduce a large-scale, multimodal dataset, StrokeRehab, as a new action-recognition benchmark that includes elemental short-duration actions labeled at a high temporal resolution. StrokeRehab consists of a high-quality inertial measurement unit sensor and video data of 51 stroke-impaired patients and 20 healthy subjects performing activities of daily living like feeding, brushing teeth, etc. Because it contains data from both healthy and impaired individuals, StrokeRehab can be used to study the influence of distribution shift in action-recognition tasks. When evaluated on StrokeRehab, current state-of-the-art models for action segmentation produce noisy predictions, which reduces their accuracy in identifying the corresponding sequence of actions. To address this, we propose a novel approach for high-resolution action identification, inspired by speech-recognition techniques, which is based on a sequence-to-sequence model that directly predicts the sequence of actions. This approach outperforms current state-of-the-art methods on StrokeRehab, as well as on the standard benchmark datasets 50Salads, Breakfast, and Jigsaws.

Author Information

Aakash Kaku (New York University)
Kangning Liu (New York University)
Avinash Parnandi (NYU Langone)
Haresh Rengaraj Rajamohan (New York University)
Kannan Venkataramanan (Prudential Financial)
Anita Venkatesan
Audre Wirtanen
Natasha Pandit
Heidi Schambra
Carlos Fernandez-Granda (NYU)

More from the Same Authors

  • 2022 Poster: Are All Losses Created Equal: A Neural Collapse Perspective »
    Jinxin Zhou · Chong You · Xiao Li · Kangning Liu · Sheng Liu · Qing Qu · Zhihui Zhu
  • 2021 Poster: Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning »
    Aakash Kaku · Sahana Upadhya · Narges Razavian
  • 2021 Poster: Adaptive Denoising via GainTuning »
    Sreyas Mohan · Joshua L Vincent · Ramon Manzorro · Peter Crozier · Carlos Fernandez-Granda · Eero Simoncelli
  • 2021 Poster: Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training »
    Sheng Liu · Xiao Li · Simon Zhai · Chong You · Zhihui Zhu · Carlos Fernandez-Granda · Qing Qu
  • 2020 Poster: Early-Learning Regularization Prevents Memorization of Noisy Labels »
    Sheng Liu · Jonathan Niles-Weed · Narges Razavian · Carlos Fernandez-Granda
  • 2019 : Coffee Break + Poster Session I »
    Wei-Hung Weng · Simon Kohl · Aiham Taleb · Arijit Patra · Khashayar Namdar · Matthias Perkonigg · Shizhan Gong · Abdullah-Al-Zubaer Imran · Amir Abdi · Ilja Manakov · Johannes C. Paetzold · Ben Glocker · Dushyant Sahoo · Shreyas Fadnavis · Karsten Roth · Xueqing Liu · Yifan Zhang · Alexander Preuhs · Fabian Eitel · Anusua Trivedi · Tomer Weiss · Darko Stern · Liset Vazquez Romaguera · Johannes Hofmanninger · Aakash Kaku · Oloruntobiloba Olatunji · Anastasia Razdaibiedina · Tao Zhang
  • 2019 : Poster Session »
    Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · SĂ©bastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie
  • 2019 Poster: Data-driven Estimation of Sinusoid Frequencies »
    Gautier Izacard · Sreyas Mohan · Carlos Fernandez-Granda