Timezone: »
Detecting which nodes in graphs are outliers is a relatively new machine learning task with numerous applications. Despite the proliferation of algorithms developed in recent years for this task, there has been no standard comprehensive setting for performance evaluation. Consequently, it has been difficult to understand which methods work well and when under a broad range of settings. To bridge this gap, we present—to the best of our knowledge—the first comprehensive benchmark for unsupervised outlier node detection on static attributed graphs called BOND, with the following highlights. (1) We benchmark the outlier detection performance of 14 methods ranging from classical matrix factorization to the latest graph neural networks. (2) Using nine real datasets, our benchmark assesses how the different detection methods respond to two major types of synthetic outliers and separately to “organic” (real non-synthetic) outliers. (3) Using an existing random graph generation technique, we produce a family of synthetically generated datasets of different graph sizes that enable us to compare the running time and memory usage of the different outlier detection algorithms. Based on our experimental results, we discuss the pros and cons of existing graph outlier detection algorithms, and we highlight opportunities for future research. Importantly, our code is freely available and meant to be easily extendable: https://github.com/pygod-team/pygod/tree/main/benchmark
Author Information
Kay Liu (University of Illinois Chicago)

I am a second year Computer Science Ph.D. student in Big Data and Social Computing (BDSC) Lab at University of Illinois at Chicago. My advisor is Prof. Philip S. Yu. Before joining UIC, I received my bachelor degree from Beijing University of Posts and Telecommunications and Queen Mary University of London in 2021. I also interned in Walmart Global Tech in summer 2022, and AWS Shanghai AI Lab DGL team in summer 2021. My research interests are Graph Mining, Anomaly Detection, and Fraud Detection.
Yingtong Dou (Visa Research)

I am a research scientist at Visa Research working on graph mining and its application in trust&safety domain. Before joining Visa, I obtained my Ph.D. degree in Computer Science at the University of Illinois Chicago in 2022.
Yue Zhao (Carnegie Mellon University)
I am pursuing a Ph.D. in Information Systems at Carnegie Mellon University, advised by Prof. Leman Akoglu. Different from most IS researchers, I focus on data mining algorithms, systems, and applications. Research Keywords: Outlier & Anomaly Detection; Ensemble Learning; Scalable Machine Learning; Machine Learning Systems.
Xueying Ding (Carnegie Mellon University)
Xiyang Hu (Carnegie Mellon University)
Ruitong Zhang
Kaize Ding (Arizona State University)
Canyu Chen (Illinois Institute of Technology)
Hao Peng (Beihang University)
Kai Shu (Illinois Institute of Technology)
Lichao Sun (Lehigh University)
Jundong Li (University of Virginia)
George H Chen (Carnegie Mellon University)
George Chen is an assistant professor of information systems at Carnegie Mellon University. He works on nonparametric prediction methods, applied to healthcare and sustainable development. He received his PhD from MIT in Electrical Engineering and Computer Science.
Zhihao Jia (Carnegie Mellon University)
Philip S Yu (UIC)
More from the Same Authors
-
2021 : Revisiting Time Series Outlier Detection: Definitions and Benchmarks »
Kwei-Herng Lai · Daochen Zha · Junjie Xu · Yue Zhao · Guanchu Wang · Xia Hu -
2021 : Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development »
Kexin Huang · Tianfan Fu · Wenhao Gao · Yue Zhao · Yusuf Roohani · Jure Leskovec · Connor Coley · Cao Xiao · Jimeng Sun · Marinka Zitnik -
2021 Spotlight: Subgraph Federated Learning with Missing Neighbor Generation »
Ke ZHANG · Carl Yang · Xiaoxiao Li · Lichao Sun · Siu Ming Yiu -
2022 Poster: TwiBot-22: Towards Graph-Based Twitter Bot Detection »
Shangbin Feng · Zhaoxuan Tan · Herun Wan · Ningnan Wang · Zilong Chen · Binchi Zhang · Qinghua Zheng · Wenqian Zhang · Zhenyu Lei · Shujie Yang · Xinshun Feng · Qingyue Zhang · Hongrui Wang · Yuhan Liu · Yuyang Bai · Heng Wang · Zijian Cai · Yanbo Wang · Lijing Zheng · Zihan Ma · Jundong Li · Minnan Luo -
2022 : When Fairness Meets Privacy: Fair Classification with Semi-Private Sensitive Attributes »
Canyu Chen · Yueqing Liang · Xiongxiao Xu · Shangyu Xie · Yuan Hong · Kai Shu -
2022 : PromptDA: Label-guided Data Augmentation for Prompt-based Few Shot Learners »
Canyu Chen · Kai Shu -
2022 : When Fairness Meets Privacy: Fair Classification with Semi-Private Sensitive Attributes »
Canyu Chen · Yueqing Liang · Xiongxiao Xu · Shangyu Xie · Yuan Hong · Kai Shu -
2022 : Contrastive Graph Few-Shot Learning »
Chunhui Zhang · Hongfu Liu · Jundong Li · Yanfang Ye · Chuxu Zhang -
2022 Spotlight: TwiBot-22: Towards Graph-Based Twitter Bot Detection »
Shangbin Feng · Zhaoxuan Tan · Herun Wan · Ningnan Wang · Zilong Chen · Binchi Zhang · Qinghua Zheng · Wenqian Zhang · Zhenyu Lei · Shujie Yang · Xinshun Feng · Qingyue Zhang · Hongrui Wang · Yuhan Liu · Yuyang Bai · Heng Wang · Zijian Cai · Yanbo Wang · Lijing Zheng · Zihan Ma · Jundong Li · Minnan Luo -
2022 : PromptDA: Label-guided Data Augmentation for Prompt-based Few Shot Learners »
Canyu Chen · Kai Shu -
2022 Poster: Distributional Reward Estimation for Effective Multi-agent Deep Reinforcement Learning »
Jifeng Hu · Yanchao Sun · Hechang Chen · Sili Huang · haiyin piao · Yi Chang · Lichao Sun -
2022 Poster: ADBench: Anomaly Detection Benchmark »
Songqiao Han · Xiyang Hu · Hailiang Huang · Minqi Jiang · Yue Zhao -
2022 Poster: Hyperparameter Sensitivity in Deep Outlier Detection: Analysis and a Scalable Hyper-Ensemble Solution »
Xueying Ding · Lingxiao Zhao · Leman Akoglu -
2022 Poster: Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination »
YIZHEN ZHENG · Shirui Pan · Vincent CS Lee · Yu Zheng · Philip S Yu -
2022 Poster: Dual-discriminative Graph Neural Network for Imbalanced Graph-level Anomaly Detection »
GE ZHANG · Zhenyu Yang · Jia Wu · Jian Yang · Shan Xue · Hao Peng · Jianlin Su · Chuan Zhou · Quan Z. Sheng · Leman Akoglu · Charu Aggarwal -
2022 Poster: CLEAR: Generative Counterfactual Explanations on Graphs »
Jing Ma · Ruocheng Guo · Saumitra Mishra · Aidong Zhang · Jundong Li -
2022 Poster: Graph Few-shot Learning with Task-specific Structures »
Song Wang · Chen Chen · Jundong Li -
2021 Poster: Subgraph Federated Learning with Missing Neighbor Generation »
Ke ZHANG · Carl Yang · Xiaoxiao Li · Lichao Sun · Siu Ming Yiu -
2021 Poster: From Canonical Correlation Analysis to Self-supervised Graph Neural Networks »
Hengrui Zhang · Qitian Wu · Junchi Yan · David Wipf · Philip S Yu -
2021 Poster: Automatic Unsupervised Outlier Model Selection »
Yue Zhao · Ryan Rossi · Leman Akoglu -
2020 : Broad Learning: A New Perspective on Mining Big Data »
Philip S Yu -
2019 Poster: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Spotlight: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Poster: Missing Not at Random in Matrix Completion: The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption »
Wei Ma · George H Chen -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 : A millennium of nearest neighbor methods – an introduction to the NIPS nearest neighbor workshop 2017 »
George H Chen -
2017 Workshop: Nearest Neighbors for Modern Applications with Massive Data: An Age-old Solution with New Challenges »
George H Chen · Devavrat Shah · Christina Lee -
2017 Poster: PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs »
Yunbo Wang · Mingsheng Long · Jianmin Wang · Zhifeng Gao · Philip S Yu -
2017 Poster: Learning Multiple Tasks with Multilinear Relationship Networks »
Mingsheng Long · ZHANGJIE CAO · Jianmin Wang · Philip S Yu -
2014 Poster: A Latent Source Model for Online Collaborative Filtering »
Guy Bresler · George H Chen · Devavrat Shah -
2014 Spotlight: A Latent Source Model for Online Collaborative Filtering »
Guy Bresler · George H Chen · Devavrat Shah -
2013 Poster: A Latent Source Model for Nonparametric Time Series Classification »
George H Chen · Stanislav Nikolov · Devavrat Shah