Timezone: »
Euclidean geometry is among the earliest forms of mathematical thinking. While the geometric primitives underlying its constructions, such as perfect lines and circles, do not often occur in the natural world, humans rarely struggle to perceive and reason with them. Will computer vision models trained on natural images show the same sensitivity to Euclidean geometry? Here we explore these questions by studying few-shot generalization in the universe of Euclidean geometry constructions. We introduce Geoclidean, a domain-specific language for Euclidean geometry, and use it to generate two datasets of geometric concept learning tasks for benchmarking generalization judgements of humans and machines. We find that humans are indeed sensitive to Euclidean geometry and generalize strongly from a few visual examples of a geometric concept. In contrast, low-level and high-level visual features from standard computer vision models pretrained on natural images do not support correct generalization. Thus Geoclidean represents a novel few-shot generalization benchmark for geometric concept learning, where the performance of humans and of AI models diverge. The Geoclidean framework and dataset are publicly available for download.
Author Information
Joy Hsu (Stanford University)
Jiajun Wu (Stanford University)
Noah Goodman (Stanford University)
More from the Same Authors
-
2021 : DABS: a Domain-Agnostic Benchmark for Self-Supervised Learning »
Alex Tamkin · Vincent Liu · Rongfei Lu · Daniel Fein · Colin Schultz · Noah Goodman -
2021 : Learning to solve complex tasks by growing knowledge culturally across generations »
Michael Tessler · Jason Madeano · Pedro Tsividis · Noah Goodman · Josh Tenenbaum -
2022 : Lemma: Bootstrapping High-Level Mathematical Reasoning with Learned Symbolic Abstractions »
Zhening Li · Gabriel Poesia Reis e Silva · Omar Costilla Reyes · Noah Goodman · Armando Solar-Lezama -
2022 : What Makes Certain Pre-Trained Visual Representations Better for Robotic Learning? »
Kyle Hsu · Tyler Lum · Ruohan Gao · Shixiang (Shane) Gu · Jiajun Wu · Chelsea Finn -
2022 : A Control-Centric Benchmark for Video Prediction »
Stephen Tian · Chelsea Finn · Jiajun Wu -
2022 : On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning »
Dilip Arumugam · Mark Ho · Noah Goodman · Benjamin Van Roy -
2022 : What Makes Certain Pre-Trained Visual Representations Better for Robotic Learning? »
Kyle Hsu · Tyler Lum · Ruohan Gao · Shixiang (Shane) Gu · Jiajun Wu · Chelsea Finn -
2022 : In the ZONE: Measuring difficulty and progression in curriculum generation »
Rose Wang · Jesse Mu · Dilip Arumugam · Natasha Jaques · Noah Goodman -
2022 : Giving Robots a Hand: Broadening Generalization via Hand-Centric Human Video Demonstrations »
Moo J Kim · Jiajun Wu · Chelsea Finn -
2023 Poster: Model-Based Control with Sparse Neural Dynamics »
Ziang Liu · Jeff He · Genggeng Zhou · Tobia Marcucci · Fei-Fei Li · Jiajun Wu · Yunzhu Li -
2023 Poster: Siamese Masked Autoencoders »
Agrim Gupta · Jiajun Wu · Jia Deng · Fei-Fei Li -
2023 Poster: What’s Left: Concept Grounding with Large Language Models »
Joy Hsu · Jiayuan Mao · Josh Tenenbaum · Jiajun Wu -
2023 Poster: Why think step by step? Reasoning emerges from the locality of experience »
Benjamin Prystawski · Michael Li · Noah Goodman -
2023 Poster: Parsel🐍: Algorithmic Reasoning with Language Models by Composing Decompositions »
Eric Zelikman · Qian Huang · Gabriel Poesia · Noah Goodman · Nick Haber -
2023 Poster: Interpretability at Scale: Identifying Causal Mechanisms in Alpaca »
Zhengxuan Wu · Atticus Geiger · Christopher Potts · Noah Goodman -
2023 Poster: Inferring Hybrid Neural Fluid Fields from Videos »
Hong-Xing Yu · Yang Zheng · Yuan Gao · Yitong Deng · Bo Zhu · Jiajun Wu -
2023 Poster: 3D Copy-Paste: Physical Plausible Indoor Object Insertion for Monocular 3D Object Detection »
Yunhao Ge · Hong-Xing Yu · Cheng Zhao · Yuliang Guo · Xinyu Huang · Liu Ren · Laurent Itti · Jiajun Wu -
2023 Poster: Feature Dropout: Revisiting the Role of Augmentations in Contrastive Learning »
Alex Tamkin · Margalit Glasgow · Xiluo He · Noah Goodman -
2023 Poster: Disentanglement via Latent Quantization »
Kyle Hsu · William Dorrell · James Whittington · Chelsea Finn · Jiajun Wu -
2023 Poster: Learning to Compress Prompts with Gist Tokens »
Jesse Mu · Xiang Li · Noah Goodman -
2023 Poster: Real-World 3D Object Inverse Rendering Benchmark »
Zhengfei Kuang · Yunzhi Zhang · Hong-Xing Yu · Samir Agarwala · Shangzhe Wu · Jiajun Wu -
2023 Poster: Holistic Evaluation of Text-to-Image Models »
Tony Lee · Michihiro Yasunaga · Chenlin Meng · Yifan Mai · Joon Sung Park · Agrim Gupta · Yunzhi Zhang · Deepak Narayanan · Hannah Teufel · Marco Bellagente · Minguk Kang · Taesung Park · Jure Leskovec · Jun-Yan Zhu · Fei-Fei Li · Jiajun Wu · Stefano Ermon · Percy Liang -
2023 Poster: Platonic Distance: Intrinsic Object-Centric Image Similarity »
Klemen Kotar · Stephen Tian · Hong-Xing Yu · Dan Yamins · Jiajun Wu -
2023 Poster: SoundCam: A Dataset for Tasks in Tracking and Identifying Humans from Real Room Acoustics »
Mason Wang · Samuel Clarke · Jui-Hsien Wang · Ruohan Gao · Jiajun Wu -
2023 Poster: Understanding Social Reasoning in Language Models with Language Models »
Kanishk Gandhi · Jan-Philipp Franken · Tobias Gerstenberg · Noah Goodman -
2023 Oral: Siamese Masked Autoencoders »
Agrim Gupta · Jiajun Wu · Jia Deng · Fei-Fei Li -
2023 Oral: Why think step by step? Reasoning emerges from the locality of experience »
Benjamin Prystawski · Michael Li · Noah Goodman -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: E-MAPP: Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance »
Can Chang · Ni Mu · Jiajun Wu · Ling Pan · Huazhe Xu -
2022 : MATH-AI: Toward Human-Level Mathematical Reasoning »
Francois Charton · Noah Goodman · Behnam Neyshabur · Talia Ringer · Daniel Selsam -
2022 : Learning Mathematical Reasoning for Education »
Noah Goodman -
2022 : Invited Talk: Noah Goodman »
Noah Goodman -
2022 Poster: Assistive Teaching of Motor Control Tasks to Humans »
Megha Srivastava · Erdem Biyik · Suvir Mirchandani · Noah Goodman · Dorsa Sadigh -
2022 Poster: E-MAPP: Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance »
Can Chang · Ni Mu · Jiajun Wu · Ling Pan · Huazhe Xu -
2022 Poster: CLEVRER-Humans: Describing Physical and Causal Events the Human Way »
Jiayuan Mao · Xuelin Yang · Xikun Zhang · Noah Goodman · Jiajun Wu -
2022 Poster: Interaction Modeling with Multiplex Attention »
Fan-Yun Sun · Isaac Kauvar · Ruohan Zhang · Jiachen Li · Mykel J Kochenderfer · Jiajun Wu · Nick Haber -
2022 Poster: Active Learning Helps Pretrained Models Learn the Intended Task »
Alex Tamkin · Dat Nguyen · Salil Deshpande · Jesse Mu · Noah Goodman -
2022 Poster: Foundation Posteriors for Approximate Probabilistic Inference »
Mike Wu · Noah Goodman -
2022 Poster: MOMA-LRG: Language-Refined Graphs for Multi-Object Multi-Actor Activity Parsing »
Zelun Luo · Zane Durante · Linden Li · Wanze Xie · Ruochen Liu · Emily Jin · Zhuoyi Huang · Lun Yu Li · Jiajun Wu · Juan Carlos Niebles · Ehsan Adeli · Fei-Fei Li -
2022 Poster: STaR: Bootstrapping Reasoning With Reasoning »
Eric Zelikman · Yuhuai Wu · Jesse Mu · Noah Goodman -
2022 Poster: IKEA-Manual: Seeing Shape Assembly Step by Step »
Ruocheng Wang · Yunzhi Zhang · Jiayuan Mao · Ran Zhang · Chin-Yi Cheng · Jiajun Wu -
2022 Poster: Unsupervised Learning of Shape Programs with Repeatable Implicit Parts »
Boyang Deng · Sumith Kulal · Zhengyang Dong · Congyue Deng · Yonglong Tian · Jiajun Wu -
2022 Poster: DABS 2.0: Improved Datasets and Algorithms for Universal Self-Supervision »
Alex Tamkin · Gaurab Banerjee · Mohamed Owda · Vincent Liu · Shashank Rammoorthy · Noah Goodman -
2022 Poster: Improving Intrinsic Exploration with Language Abstractions »
Jesse Mu · Victor Zhong · Roberta Raileanu · Minqi Jiang · Noah Goodman · Tim Rocktäschel · Edward Grefenstette -
2021 : Spotlight Talk: Learning to solve complex tasks by growing knowledge culturally across generations »
Noah Goodman · Josh Tenenbaum · Michael Tessler · Jason Madeano -
2021 : Multi-party referential communication in complex strategic games »
Jessica Mankewitz · Veronica Boyce · Brandon Waldon · Georgia Loukatou · Dhara Yu · Jesse Mu · Noah Goodman · Michael C Frank -
2021 Workshop: Meaning in Context: Pragmatic Communication in Humans and Machines »
Jennifer Hu · Noga Zaslavsky · Aida Nematzadeh · Michael Franke · Roger Levy · Noah Goodman -
2021 : Opening remarks »
Jennifer Hu · Noga Zaslavsky · Aida Nematzadeh · Michael Franke · Roger Levy · Noah Goodman -
2021 Poster: Emergent Communication of Generalizations »
Jesse Mu · Noah Goodman -
2021 Poster: Contrastive Reinforcement Learning of Symbolic Reasoning Domains »
Gabriel Poesia · WenXin Dong · Noah Goodman -
2021 Poster: Grammar-Based Grounded Lexicon Learning »
Jiayuan Mao · Freda Shi · Jiajun Wu · Roger Levy · Josh Tenenbaum -
2021 Poster: Improving Compositionality of Neural Networks by Decoding Representations to Inputs »
Mike Wu · Noah Goodman · Stefano Ermon -
2021 Poster: Capturing implicit hierarchical structure in 3D biomedical images with self-supervised hyperbolic representations »
Joy Hsu · Jeffrey Gu · Gong Wu · Wah Chiu · Serena Yeung -
2021 Panel: The Consequences of Massive Scaling in Machine Learning »
Noah Goodman · Melanie Mitchell · Joelle Pineau · Oriol Vinyals · Jared Kaplan -
2020 : Panel #2 »
Oren Etzioni · Heng Ji · Subbarao Kambhampati · Victoria Lin · Jiajun Wu -
2020 : Q&A #2 »
Heng Ji · Jure Leskovec · Jiajun Wu -
2020 : Invited Talk #6 »
Jiajun Wu -
2020 : Contributed Talk 1: Learning Hyperbolic Representations for Unsupervised 3D Segmentation »
Joy Hsu · Jeffrey Gu · Serena Yeung -
2020 Poster: Multi-Plane Program Induction with 3D Box Priors »
Yikai Li · Jiayuan Mao · Xiuming Zhang · Bill Freeman · Josh Tenenbaum · Noah Snavely · Jiajun Wu -
2020 Poster: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 Poster: Language Through a Prism: A Spectral Approach for Multiscale Language Representations »
Alex Tamkin · Dan Jurafsky · Noah Goodman -
2020 Oral: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 : Neuro-Symbolic Visual Concept Learning »
Jiajun Wu -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 Poster: Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations »
Kevin Smith · Lingjie Mei · Shunyu Yao · Jiajun Wu · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2019 Poster: Visual Concept-Metaconcept Learning »
Chi Han · Jiayuan Mao · Chuang Gan · Josh Tenenbaum · Jiajun Wu -
2019 Poster: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Spotlight: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2018 Workshop: Modeling the Physical World: Learning, Perception, and Control »
Jiajun Wu · Kelsey Allen · Kevin Smith · Jessica Hamrick · Emmanuel Dupoux · Marc Toussaint · Josh Tenenbaum -
2018 Poster: Learning to Reconstruct Shapes from Unseen Classes »
Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu -
2018 Oral: Learning to Reconstruct Shapes from Unseen Classes »
Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu -
2018 Poster: Visual Object Networks: Image Generation with Disentangled 3D Representations »
Jun-Yan Zhu · Zhoutong Zhang · Chengkai Zhang · Jiajun Wu · Antonio Torralba · Josh Tenenbaum · Bill Freeman -
2018 Poster: Learning to Exploit Stability for 3D Scene Parsing »
Yilun Du · Zhijian Liu · Hector Basevi · Ales Leonardis · Bill Freeman · Josh Tenenbaum · Jiajun Wu -
2018 Poster: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Poster: 3D-Aware Scene Manipulation via Inverse Graphics »
Shunyu Yao · Tzu Ming Hsu · Jun-Yan Zhu · Jiajun Wu · Antonio Torralba · Bill Freeman · Josh Tenenbaum -
2018 Poster: Bias and Generalization in Deep Generative Models: An Empirical Study »
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon -
2018 Spotlight: Bias and Generalization in Deep Generative Models: An Empirical Study »
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon -
2018 Spotlight: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Poster: Multimodal Generative Models for Scalable Weakly-Supervised Learning »
Mike Wu · Noah Goodman -
2017 : Morning panel discussion »
Jürgen Schmidhuber · Noah Goodman · Anca Dragan · Pushmeet Kohli · Dhruv Batra -
2017 : "Language in context" »
Noah Goodman -
2017 Spotlight: Shape and Material from Sound »
Zhoutong Zhang · Qiujia Li · Zhengjia Huang · Jiajun Wu · Josh Tenenbaum · Bill Freeman -
2017 Spotlight: Scene Physics Acquisition via Visual De-animation »
Jiajun Wu · Erika Lu · Pushmeet Kohli · Bill Freeman · Josh Tenenbaum -
2017 Poster: Learning to See Physics via Visual De-animation »
Jiajun Wu · Erika Lu · Pushmeet Kohli · Bill Freeman · Josh Tenenbaum -
2017 Poster: Shape and Material from Sound »
Zhoutong Zhang · Qiujia Li · Zhengjia Huang · Jiajun Wu · Josh Tenenbaum · Bill Freeman -
2017 Poster: MarrNet: 3D Shape Reconstruction via 2.5D Sketches »
Jiajun Wu · Yifan Wang · Tianfan Xue · Xingyuan Sun · Bill Freeman · Josh Tenenbaum -
2017 Poster: Self-Supervised Intrinsic Image Decomposition »
Michael Janner · Jiajun Wu · Tejas Kulkarni · Ilker Yildirim · Josh Tenenbaum -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 Workshop: Intuitive Physics »
Adam Lerer · Jiajun Wu · Josh Tenenbaum · Emmanuel Dupoux · Rob Fergus -
2016 Poster: Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling »
Jiajun Wu · Chengkai Zhang · Tianfan Xue · Bill Freeman · Josh Tenenbaum -
2016 Poster: Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks »
Tianfan Xue · Jiajun Wu · Katherine Bouman · Bill Freeman -
2016 Oral: Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks »
Tianfan Xue · Jiajun Wu · Katherine Bouman · Bill Freeman -
2016 Poster: Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks »
Daniel Ritchie · Anna Thomas · Pat Hanrahan · Noah Goodman -
2015 Workshop: Bounded Optimality and Rational Metareasoning »
Samuel J Gershman · Falk Lieder · Tom Griffiths · Noah Goodman -
2015 Poster: Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning »
Jiajun Wu · Ilker Yildirim · Joseph Lim · Bill Freeman · Josh Tenenbaum -
2013 Poster: Learning and using language via recursive pragmatic reasoning about other agents »
Nathaniel J Smith · Noah Goodman · Michael C Frank -
2013 Poster: Learning Stochastic Inverses »
Andreas Stuhlmüller · Jacob Taylor · Noah Goodman -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Poster: Burn-in, bias, and the rationality of anchoring »
Falk Lieder · Tom Griffiths · Noah Goodman -
2011 Poster: Nonstandard Interpretations of Probabilistic Programs for Efficient Inference »
David Wingate · Noah Goodman · Andreas Stuhlmueller · Jeffrey Siskind