Timezone: »
Author Information
Jinwuk Seok (Electronics and Telecommunications Research Institute)
Jinwuk Seok received his BS and MS degrees in Electrical Control Engineering from Hong-Ik University, Seoul, Republic of Korea, in 1993 and 1995, respectively. Additionally, he received his Ph.D. degree in Electrical Engineering from Hong-Ik University, Seoul, Republic of Korea, in 1998. He has been a principal member of engineering staff at Electronics and Telecommunications Research Institute in Korea since 2000, and an adjunct professor of the Computer Software Engineering Department at the University of Science and Technology in Korea since 2009. His research interests include artificial intelligence, machine learning, and stochastic nonlinear control.
Bo Liu (The University of Texas at Austin)
Ryotaro Mitsuboshi (Kyushu University)
David Martinez-Rubio (Zuse Institute Berlin)
Weiqiang Zheng (Yale University)
Ilgee Hong (University of Chicago)
Chen Fan (University of British Columbia)
Kazusato Oko (The University of Tokyo)
Bo Tang (University of Toronto)
I am a Ph.D. candidate in the MIE department at the University of Toronto. Elias Khalil is my supervisor. And my current research area is the intersection of Operations Research and Machine learning, particularly in End-to-End Predict-then-Optimize.
Miao Cheng (LinkedIn)
I am currently part of the Data/AI team at LinkedIn, building end-to-end innovative AI/ML solutions for products at scale. Tsinghua University (Bachelor's degrees in Automation/EECS and Economics) + UPenn Computer Science Grad.
Aaron Defazio (Facebook AI Research)
Tim G. J. Rudner (University of Oxford)
Tim G. J. Rudner is a Computer Science PhD student at the University of Oxford supervised by Yarin Gal and Yee Whye Teh. His research interests span Bayesian deep learning, reinforcement learning, and variational inference. He obtained a master’s degree in statistics from the University of Oxford and an undergraduate degree in mathematics and economics from Yale University. Tim is also a Rhodes Scholar and a Fellow of the German National Academic Foundation.
Gabriele Farina (Meta AI; Carnegie Mellon University)
Vishwak Srinivasan (Massachusetts Institute of Technology)
Ruichen Jiang (UT Austin)
Peng Wang (University of Michigan - Ann Arbor)
Jane Lee (Yale University)
Nathan Wycoff (Georgetown University)
Nikhil Ghosh (UC Berkeley)
Yinbin Han (University of Southern California)
David Mueller (Johns Hopkins University)
Liu Yang (University of Wisconsin, Madison)
Amrutha Varshini Ramesh (University of British Columbia)
Siqi Zhang (Johns Hopkins University)
Kaifeng Lyu (Princeton University)
David Yunis (TTIC)
Kumar Kshitij Patel (Toyota Technological Institute at Chicago)
Fangshuo Liao (Rice University)
Dmitrii Avdiukhin (Indiana University)
Xiang Li (ETH Zurich)
Sattar Vakili (MediaTek Research)
Jiaxin Shi (Stanford University)
More from the Same Authors
-
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Stochastic Learning Equation using Monotone Increasing Resolution of Quantization »
Jinwuk Seok · -
2021 : A New Scheme for Boosting with an Average Margin Distribution Oracle »
Ryotaro Mitsuboshi · Kohei Hatano · Eiji Takimoto -
2021 : Stochastic Polyak Stepsize with a Moving Target »
Robert Gower · Aaron Defazio · Mike Rabbat -
2021 : PCA Subspaces Are Not Always Optimal for Bayesian Learning »
Alexandre Bense · Amir Joudaki · Tim G. J. Rudner · Vincent Fortuin -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions »
Xiaotie Deng · Xinyan Hu · Tao Lin · Weiqiang Zheng -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions »
Xiaotie Deng · Xinyan Hu · Tao Lin · Weiqiang Zheng -
2022 : LOFT: Finding Lottery Tickets through Filter-wise Training »
Qihan Wang · Chen Dun · Fangshuo Liao · Christopher Jermaine · Anastasios Kyrillidis -
2022 : A Finite-Particle Convergence Rate for Stein Variational Gradient Descent »
Jiaxin Shi · Lester Mackey -
2022 : TiAda: A Time-scale Adaptive Algorithm For Nonconvex Minimax Optimization »
Xiang Li · Junchi YANG · Niao He -
2022 : TiAda: A Time-scale Adaptive Algorithm For Nonconvex Minimax Optimization »
Xiang Li · Junchi YANG · Niao He -
2022 : Bidirectional Adaptive Communication for Heterogeneous Distributed Learning »
Dmitrii Avdiukhin · Vladimir Braverman · Nikita Ivkin · Sebastian Stich -
2022 : Strong Lottery Ticket Hypothesis with $\epsilon$–perturbation »
Fangshuo Liao · Zheyang Xiong · Anastasios Kyrillidis -
2022 : Strong Lottery Ticket Hypothesis with $\epsilon$–perturbation »
Fangshuo Liao · Zheyang Xiong · Anastasios Kyrillidis -
2022 : Distributed Online and Bandit Convex Optimization »
Kumar Kshitij Patel · Aadirupa Saha · Nati Srebro · Lingxiao Wang -
2022 : On Convexity and Linear Mode Connectivity in Neural Networks »
David Yunis · Kumar Kshitij Patel · Pedro Savarese · Gal Vardi · Jonathan Frankle · Matthew Walter · Karen Livescu · Michael Maire -
2022 : Why (and When) does Local SGD Generalize Better than SGD? »
Xinran Gu · Kaifeng Lyu · Longbo Huang · Sanjeev Arora -
2022 : ProxSkip for Stochastic Variational Inequalities: A Federated Learning Algorithm for Provable Communication Acceleration »
Siqi Zhang · Nicolas Loizou -
2022 : Fast Convergence of Greedy 2-Coordinate Updates for Optimizing with an Equality Constraint »
Amrutha Varshini Ramesh · Aaron Mishkin · Mark Schmidt -
2022 : A Better Way to Decay: Proximal Gradient Training Algorithms for Neural Nets »
Liu Yang · Jifan Zhang · Joseph Shenouda · Dimitris Papailiopoulos · Kangwook Lee · Robert Nowak -
2022 : Policy gradient finds global optimum of nearly linear-quadratic control systems »
Yinbin Han · Meisam Razaviyayn · Renyuan Xu -
2022 : The Importance of Temperature in Multi-Task Optimization »
David Mueller · Mark Dredze · Nicholas Andrews -
2022 : Escaping from Moderately Constrained Saddles »
Dmitrii Avdiukhin · Grigory Yaroslavtsev -
2022 : Uniform Convergence and Generalization for Nonconvex Stochastic Minimax Problems »
Siqi Zhang · Yifan Hu · Liang Zhang · Niao He -
2022 : Gradient dynamics of single-neuron autoencoders on orthogonal data »
Nikhil Ghosh · Spencer Frei · Wooseok Ha · Bin Yu -
2022 : A Variable-Coefficient Nuclear Norm Penalty for Low Rank Inference »
Nathan Wycoff · Ali Arab · Lisa Singh -
2022 : Exact Gradient Computation for Spiking Neural Networks »
Jane Lee · Saeid Haghighatshoar · Amin Karbasi -
2022 : Linear Convergence Analysis of Neural Collapse with Unconstrained Features »
Peng Wang · Huikang Liu · Can Yaras · Laura Balzano · Qing Qu -
2022 : Conditional gradient-based method for bilevel optimization with convex lower-level problem »
Ruichen Jiang · Nazanin Abolfazli · Aryan Mokhtari · Erfan Yazdandoost Hamedani -
2022 : Sufficient conditions for non-asymptotic convergence of Riemannian optimization methods »
Vishwak Srinivasan · Ashia Wilson -
2022 : A Neural Tangent Kernel Perspective on Function-Space Regularization in Neural Networks »
Zonghao Chen · Xupeng Shi · Tim G. J. Rudner · Qixuan Feng · Weizhong Zhang · Tong Zhang -
2022 : Clairvoyant Regret Minimization: Equivalence with Nemirovski’s Conceptual Prox Method and Extension to General Convex Games »
Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo -
2022 : Parameter Free Dual Averaging: Optimizing Lipschitz Functions in a Single Pass »
Aaron Defazio · Konstantin Mishchenko -
2022 : A Light-speed Linear Program Solver for Personalized Recommendation with Diversity Constraints »
Miao Cheng · Haoyue Wang · Aman Gupta · Rahul Mazumder · Sathiya Selvaraj · Kinjal Basu -
2022 : PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library with Linear Objective Function »
Bo Tang · Elias Khalil -
2022 : Reducing Communication in Nonconvex Federated Learning with a Novel Single-Loop Variance Reduction Method »
Kazusato Oko · Shunta Akiyama · Tomoya Murata · Taiji Suzuki -
2022 : Fast Convergence of Random Reshuffling under Interpolation and the Polyak-Łojasiewicz Condition »
Chen Fan · Christos Thrampoulidis · Mark Schmidt -
2022 : Adaptive Inexact Sequential Quadratic Programming via Iterative Randomized Sketching »
Ilgee Hong · Sen Na · Mladen Kolar -
2022 : Accelerated Single-Call Methods for Constrained Min-Max Optimization »
Yang Cai · Weiqiang Zheng -
2022 : Accelerated Algorithms for Monotone Inclusion and Constrained Nonconvex-Nonconcave Min-Max Optimization »
Yang Cai · Argyris Oikonomou · Weiqiang Zheng -
2022 : Accelerated Riemannian Optimization: Handling Constraints to Bound Geometric Penalties »
David Martinez-Rubio · Sebastian Pokutta -
2022 : Gradient Descent: Robustness to Adversarial Corruption »
Fu-Chieh Chang · Farhang Nabiei · Pei-Yuan Wu · Alexandru Cioba · Sattar Vakili · Alberto Bernacchia -
2022 : Boosting as Frank-Wolfe »
Ryotaro Mitsuboshi · Kohei Hatano · Eiji Takimoto -
2022 : BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Mao Ye · Bo Liu · Stephen Wright · Peter Stone · Qiang Liu -
2022 : Quantization based Optimization : Alternative Stochastic Approximation of Global Optimization »
Jinwuk Seok · Changsik Cho -
2022 : Deconstructing Distributions: A Pointwise Framework of Learning »
Gal Kaplun · Nikhil Ghosh · Saurabh Garg · Boaz Barak · Preetum Nakkiran -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : GIST: Distributed Training for Large-Scale Graph Convolutional Networks »
Cameron Wolfe · Jingkang Yang · Fangshuo Liao · Arindam Chowdhury · Chen Dun · Artun Bayer · Santiago Segarra · Anastasios Kyrillidis -
2022 : Sufficient Conditions for Non-asymptotic Convergence of Riemannian Optimization Methods »
Vishwak Srinivasan · Ashia Wilson -
2022 : Mastering the Game of No-Press Diplomacy via Human-Regularized Reinforcement Learning and Planning »
Anton Bakhtin · David Wu · Adam Lerer · Jonathan Gray · Athul Jacob · Gabriele Farina · Alexander Miller · Noam Brown -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : ESCHER: ESCHEWING IMPORTANCE SAMPLING IN GAMES BY COMPUTING A HISTORY VALUE FUNCTION TO ESTIMATE REGRET »
Stephen McAleer · Gabriele Farina · Marc Lanctot · Tuomas Sandholm -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2022 : Contributed Talks 3 »
Cristóbal Guzmán · Fangshuo Liao · Vishwak Srinivasan · Zhiyuan Li -
2022 : Contributed Talks 2 »
Quanquan Gu · Aaron Defazio · Jiajin Li -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 : Learning Absorption Rates in Glucose-Insulin Dynamics from Meal Covariates »
Ke Alexander Wang · Matthew Levine · Jiaxin Shi · Emily Fox -
2022 : Learning Absorption Rates in Glucose-Insulin Dynamics from Meal Covariates »
Ke Alexander Wang · Matthew Levine · Jiaxin Shi · Emily Fox -
2022 Poster: Tractable Function-Space Variational Inference in Bayesian Neural Networks »
Tim G. J. Rudner · Zonghao Chen · Yee Whye Teh · Yarin Gal -
2022 Poster: Fast Algorithms for Packing Proportional Fairness and its Dual »
Francisco Criado · David Martinez-Rubio · Sebastian Pokutta -
2022 Poster: Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax Optimization »
Junchi YANG · Xiang Li · Niao He -
2022 Poster: Towards Optimal Communication Complexity in Distributed Non-Convex Optimization »
Kumar Kshitij Patel · Lingxiao Wang · Blake Woodworth · Brian Bullins · Nati Srebro -
2022 Poster: Uncoupled Learning Dynamics with $O(\log T)$ Swap Regret in Multiplayer Games »
Ioannis Anagnostides · Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo · Tuomas Sandholm -
2022 Poster: New Definitions and Evaluations for Saliency Methods: Staying Intrinsic, Complete and Sound »
Arushi Gupta · Nikunj Saunshi · Dingli Yu · Kaifeng Lyu · Sanjeev Arora -
2022 Poster: BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Bo Liu · Mao Ye · Stephen Wright · Peter Stone · Qiang Liu -
2022 Poster: Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold »
Can Yaras · Peng Wang · Zhihui Zhu · Laura Balzano · Qing Qu -
2022 Poster: Optimistic Mirror Descent Either Converges to Nash or to Strong Coarse Correlated Equilibria in Bimatrix Games »
Ioannis Anagnostides · Gabriele Farina · Ioannis Panageas · Tuomas Sandholm -
2022 Poster: Subgame Solving in Adversarial Team Games »
Brian Zhang · Luca Carminati · Federico Cacciamani · Gabriele Farina · Pierriccardo Olivieri · Nicola Gatti · Tuomas Sandholm -
2022 Poster: Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction »
Kaifeng Lyu · Zhiyuan Li · Sanjeev Arora -
2022 Poster: Rare Gems: Finding Lottery Tickets at Initialization »
Kartik Sreenivasan · Jy-yong Sohn · Liu Yang · Matthew Grinde · Alliot Nagle · Hongyi Wang · Eric Xing · Kangwook Lee · Dimitris Papailiopoulos -
2022 Poster: Near-Optimal Collaborative Learning in Bandits »
Clémence Réda · Sattar Vakili · Emilie Kaufmann -
2022 Poster: Near-Optimal No-Regret Learning Dynamics for General Convex Games »
Gabriele Farina · Ioannis Anagnostides · Haipeng Luo · Chung-Wei Lee · Christian Kroer · Tuomas Sandholm -
2022 Poster: Finite-Time Last-Iterate Convergence for Learning in Multi-Player Games »
Yang Cai · Argyris Oikonomou · Weiqiang Zheng -
2022 Poster: Triangulation candidates for Bayesian optimization »
Robert Gramacy · Annie Sauer · Nathan Wycoff -
2022 Poster: On the SDEs and Scaling Rules for Adaptive Gradient Algorithms »
Sadhika Malladi · Kaifeng Lyu · Abhishek Panigrahi · Sanjeev Arora -
2022 Poster: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2022 Expo Demonstration: Human Modeling and Strategic Reasoning in the Game of Diplomacy »
Noam Brown · Alexander Miller · Gabriele Farina -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2021 : Poster Session 1 (gather.town) »
Hamed Jalali · Robert Hönig · Maximus Mutschler · Manuel Madeira · Abdurakhmon Sadiev · Egor Shulgin · Alasdair Paren · Pascal Esser · Simon Roburin · Julius Kunze · Agnieszka Słowik · Frederik Benzing · Futong Liu · Hongyi Li · Ryotaro Mitsuboshi · Grigory Malinovsky · Jayadev Naram · Zhize Li · Igor Sokolov · Sharan Vaswani -
2021 Poster: Conflict-Averse Gradient Descent for Multi-task learning »
Bo Liu · Xingchao Liu · Xiaojie Jin · Peter Stone · Qiang Liu -
2021 Poster: Outcome-Driven Reinforcement Learning via Variational Inference »
Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine -
2021 Poster: Equilibrium Refinement for the Age of Machines: The One-Sided Quasi-Perfect Equilibrium »
Gabriele Farina · Tuomas Sandholm -
2021 Poster: A Stochastic Newton Algorithm for Distributed Convex Optimization »
Brian Bullins · Kshitij Patel · Ohad Shamir · Nathan Srebro · Blake Woodworth -
2021 Poster: Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias »
Kaifeng Lyu · Zhiyuan Li · Runzhe Wang · Sanjeev Arora -
2021 Poster: Escaping Saddle Points with Compressed SGD »
Dmitrii Avdiukhin · Grigory Yaroslavtsev -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: Machine versus Human Attention in Deep Reinforcement Learning Tasks »
Sihang Guo · Ruohan Zhang · Bo Liu · Yifeng Zhu · Dana Ballard · Mary Hayhoe · Peter Stone -
2021 Poster: A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance »
Sudeep Salgia · Sattar Vakili · Qing Zhao -
2021 Poster: Optimal Order Simple Regret for Gaussian Process Bandits »
Sattar Vakili · Nacime Bouziani · Sepehr Jalali · Alberto Bernacchia · Da-shan Shiu -
2021 Poster: Scalable Thompson Sampling using Sparse Gaussian Process Models »
Sattar Vakili · Henry Moss · Artem Artemev · Vincent Dutordoir · Victor Picheny -
2020 Poster: On Learning Ising Models under Huber's Contamination Model »
Adarsh Prasad · Vishwak Srinivasan · Sivaraman Balakrishnan · Pradeep Ravikumar -
2020 Poster: Minibatch vs Local SGD for Heterogeneous Distributed Learning »
Blake Woodworth · Kumar Kshitij Patel · Nati Srebro -
2020 Poster: Polynomial-Time Computation of Optimal Correlated Equilibria in Two-Player Extensive-Form Games with Public Chance Moves and Beyond »
Gabriele Farina · Tuomas Sandholm -
2020 Poster: Firefly Neural Architecture Descent: a General Approach for Growing Neural Networks »
Lemeng Wu · Bo Liu · Peter Stone · Qiang Liu -
2020 Poster: No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium »
Andrea Celli · Alberto Marchesi · Gabriele Farina · Nicola Gatti -
2020 Oral: No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium »
Andrea Celli · Alberto Marchesi · Gabriele Farina · Nicola Gatti -
2020 Poster: MRI Banding Removal via Adversarial Training »
Aaron Defazio · Tullie Murrell · Michael Recht -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Poster: Communication trade-offs for Local-SGD with large step size »
Aymeric Dieuleveut · Kumar Kshitij Patel -
2019 Poster: Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Spotlight: Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Poster: On the Ineffectiveness of Variance Reduced Optimization for Deep Learning »
Aaron Defazio · Leon Bottou -
2019 Poster: Optimistic Regret Minimization for Extensive-Form Games via Dilated Distance-Generating Functions »
Gabriele Farina · Christian Kroer · Tuomas Sandholm -
2019 Poster: VIREL: A Variational Inference Framework for Reinforcement Learning »
Mattie Fellows · Anuj Mahajan · Tim G. J. Rudner · Shimon Whiteson -
2019 Spotlight: VIREL: A Variational Inference Framework for Reinforcement Learning »
Mattie Fellows · Anuj Mahajan · Tim G. J. Rudner · Shimon Whiteson -
2019 Poster: On the Curved Geometry of Accelerated Optimization »
Aaron Defazio -
2019 Poster: Landmark Ordinal Embedding »
Nikhil Ghosh · Yuxin Chen · Yisong Yue -
2018 : Regret Decomposition in Sequential Games with Convex Action Spaces and Losses »
Gabriele Farina -
2018 Poster: Solving Large Sequential Games with the Excessive Gap Technique »
Christian Kroer · Gabriele Farina · Tuomas Sandholm -
2018 Poster: Practical exact algorithm for trembling-hand equilibrium refinements in games »
Gabriele Farina · Nicola Gatti · Tuomas Sandholm -
2018 Spotlight: Solving Large Sequential Games with the Excessive Gap Technique »
Christian Kroer · Gabriele Farina · Tuomas Sandholm -
2018 Poster: Ex ante coordination and collusion in zero-sum multi-player extensive-form games »
Gabriele Farina · Andrea Celli · Nicola Gatti · Tuomas Sandholm -
2017 : Poster session »
Xun Zheng · Tim G. J. Rudner · Christopher Tegho · Patrick McClure · Yunhao Tang · ASHWIN D'CRUZ · Juan Camilo Gamboa Higuera · Chandra Sekhar Seelamantula · Jhosimar Arias Figueroa · Andrew Berlin · Maxime Voisin · Alexander Amini · Thang Long Doan · Hengyuan Hu · Aleksandar Botev · Niko Suenderhauf · CHI ZHANG · John Lambert