Timezone: »
Many engineering, scientific, and industrial applications including automated machine learning (e.g., hyper-parameter tuning) involve making design choices to optimize one or more expensive to evaluate objectives. Some examples include tuning the knobs of a compiler to optimize performance and efficiency of a set of software programs; designing new materials to optimize strength, elasticity, and durability; and designing hardware to optimize performance, power, and area. Bayesian Optimization (BO) is an effective framework to solve black-box optimization problems with expensive function evaluations. The key idea behind BO is to build a cheap surrogate model (e.g., Gaussian Process) using the real experimental data; and employ it to intelligently select the sequence of function evaluations using an acquisition function, e.g., expected improvement (EI).
The goal of this tutorial is to present recent advances in BO by focusing on challenges, principles, algorithmic ideas and their connections, and important real-world applications. Specifically, we will cover recent work on acqusition functions, BO methods for discrete and hybrid spaces, BO methods for high-dimensional input spaces, causal BO, and key innovations in BoTorch toolbox along with a hands-on demonstration.
Mon 11:00 a.m. - 12:50 p.m.
|
Tutorial part 1
(
tutorial part 1
)
SlidesLive Video » |
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa 🔗 |
Mon 12:50 p.m. - 1:00 p.m.
|
Q & A
(
questions
)
|
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa 🔗 |
Mon 1:00 p.m. - 1:05 p.m.
|
Break to welcome panellists
|
🔗 |
Mon 1:05 p.m. - 1:30 p.m.
|
Panel
SlidesLive Video » |
Roman Garnett · José Miguel Hernández-Lobato · Eytan Bakshy · Syrine Belakaria · Stefanie Jegelka 🔗 |
Author Information
Janardhan Rao Doppa (Washington State University)
Virginia Aglietti (DeepMind)
Jacob Gardner (University of Pennsylvania)
More from the Same Authors
-
2020 : Scalable Combinatorial Bayesian Optimization with Tractable Statistical models »
Aryan Deshwal · Syrine Belakaria · Janardhan Rao Doppa -
2020 : Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations »
Syrine Belakaria · Aryan Deshwal · Janardhan Rao Doppa -
2022 : Efficient Variational Gaussian Processes Initialization via Kernel-based Least Squares Fitting »
Xinran Zhu · David Bindel · Jacob Gardner -
2022 : Preference-Aware Constrained Multi-Objective Bayesian Optimization »
Alaleh Ahmadianshalchi · Syrine Belakaria · Janardhan Rao Doppa -
2022 : Preference-Aware Constrained Multi-Objective Bayesian Optimization »
Alaleh Ahmadianshalchi · Syrine Belakaria · Janardhan Rao Doppa -
2022 : Q & A »
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa -
2022 : Tutorial part 1 »
Jacob Gardner · Virginia Aglietti · Janardhan Rao Doppa -
2022 : Panel Discussion »
Jacob Gardner · Marta Blangiardo · Viacheslav Borovitskiy · Jasper Snoek · Paula Moraga · Carolina Osorio -
2022 Poster: Local Bayesian optimization via maximizing probability of descent »
Quan Nguyen · Kaiwen Wu · Jacob Gardner · Roman Garnett -
2022 Poster: Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients »
Kyurae Kim · Jisu Oh · Jacob Gardner · Adji Bousso Dieng · Hongseok Kim -
2022 Poster: Local Latent Space Bayesian Optimization over Structured Inputs »
Natalie Maus · Haydn Jones · Juston Moore · Matt Kusner · John Bradshaw · Jacob Gardner -
2021 Poster: Dynamic Causal Bayesian Optimization »
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas -
2021 Poster: Scaling Gaussian Processes with Derivative Information Using Variational Inference »
Misha Padidar · Xinran Zhu · Leo Huang · Jacob Gardner · David Bindel -
2020 Poster: Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization »
Geoff Pleiss · Martin Jankowiak · David Eriksson · Anil Damle · Jacob Gardner -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2020 Poster: Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees »
Shali Jiang · Daniel Jiang · Maximilian Balandat · Brian Karrer · Jacob Gardner · Roman Garnett -
2019 Poster: Max-value Entropy Search for Multi-Objective Bayesian Optimization »
Syrine Belakaria · Aryan Deshwal · Janardhan Rao Doppa -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps