Timezone: »

 
Poster
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran · Simone Rossi · Dimitrios Milios · Maurizio Filippone

Wed Nov 30 09:00 AM -- 11:00 AM (PST) @ Hall J #1006

The Bayesian treatment of neural networks dictates that a prior distribution is specified over their weight and bias parameters. This poses a challenge because modern neural networks are characterized by a large number of parameters, and the choice of these priors has an uncontrolled effect on the induced functional prior, which is the distribution of the functions obtained by sampling the parameters from their prior distribution. We argue that this is a hugely limiting aspect of Bayesian deep learning, and this work tackles this limitation in a practical and effective way. Our proposal is to reason in terms of functional priors, which are easier to elicit, and to “tune” the priors of neural network parameters in a way that they reflect such functional priors. Gaussian processes offer a rigorous framework to define prior distributions over functions, and we propose a novel and robust framework to match their prior with the functional prior of neural networks based on the minimization of their Wasserstein distance. We provide vast experimental evidence that coupling these priors with scalable Markov chain Monte Carlo sampling offers systematically large performance improvements over alternative choices of priors and state-of-the-art approximate Bayesian deep learning approaches. We consider this work a considerable step in the direction of making the long-standing challenge of carrying out a fully Bayesian treatment of neural networks, including convolutional neural networks, a concrete possibility.

Author Information

Ba-Hien Tran (EURECOM)
Simone Rossi (EURECOM)
Dimitrios Milios (EURECOM, Sophia Antipolis)
Maurizio Filippone (EURECOM)

More from the Same Authors

  • 2023 Poster: One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models »
    Ba-Hien Tran · Giulio Franzese · Pietro Michiardi · Maurizio Filippone
  • 2023 Poster: On permutation symmetries in Bayesian neural network posteriors »
    Simone Rossi · Ankit Singh · Thomas Hannagan
  • 2023 Poster: Continuous-Time Functional Diffusion Processes »
    Giulio Franzese · Giulio Corallo · Simone Rossi · Markus Heinonen · Maurizio Filippone · Pietro Michiardi
  • 2021 Poster: Model Selection for Bayesian Autoencoders »
    Ba-Hien Tran · Simone Rossi · Dimitrios Milios · Pietro Michiardi · Edwin Bonilla · Maurizio Filippone
  • 2020 Poster: Walsh-Hadamard Variational Inference for Bayesian Deep Learning »
    Simone Rossi · Sebastien Marmin · Maurizio Filippone
  • 2019 : Poster session »
    Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak
  • 2019 Poster: Pseudo-Extended Markov chain Monte Carlo »
    Christopher Nemeth · Fredrik Lindsten · Maurizio Filippone · James Hensman
  • 2018 Poster: Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification »
    Dimitrios Milios · Raffaello Camoriano · Pietro Michiardi · Lorenzo Rosasco · Maurizio Filippone
  • 2015 Poster: MCMC for Variationally Sparse Gaussian Processes »
    James Hensman · Alexander Matthews · Maurizio Filippone · Zoubin Ghahramani