Timezone: »
In this work we propose a new class of inter-domain variational Gaussian process, constructed by projecting onto a set of compactly supported B-Spline basis functions. Our model is akin to variational Fourier features. However, due to the compact support of the B-Spline basis, we produce sparse covariance matrices. This enables us to make use of sparse linear algebra to efficiently compute matrix operations. After a one-off pre-computation, we show that our method reduces both the memory requirement and the per-iteration computational complexity to linear in the number of inducing points.
Author Information
Jake Cunningham (UCL)
So Takao (University College London)
Mark van der Wilk (Imperial College London)
Marc Deisenroth (University College London)

Professor Marc Deisenroth is the DeepMind Chair in Artificial Intelligence at University College London and the Deputy Director of UCL's Centre for Artificial Intelligence. He also holds a visiting faculty position at the University of Johannesburg and Imperial College London. Marc's research interests center around data-efficient machine learning, probabilistic modeling and autonomous decision making. Marc was Program Chair of EWRL 2012, Workshops Chair of RSS 2013, EXPO-Co-Chair of ICML 2020, and Tutorials Co-Chair of NeurIPS 2021. In 2019, Marc co-organized the Machine Learning Summer School in London. He received Paper Awards at ICRA 2014, ICCAS 2016, and ICML 2020. He is co-author of the book [Mathematics for Machine Learning](https://mml-book.github.io) published by Cambridge University Press (2020).
More from the Same Authors
-
2021 : Imitation Learning from Pixel Observations for Continuous Control »
Samuel Cohen · Brandon Amos · Marc Deisenroth · Mikael Henaff · Eugene Vinitsky · Denis Yarats -
2021 : On Combining Expert Demonstrations in Imitation Learning via Optimal Transport »
ilana sebag · Samuel Cohen · Marc Deisenroth -
2021 : Sliced Multi-Marginal Optimal Transport »
Samuel Cohen · Alexander Terenin · Yannik Pitcan · Brandon Amos · Marc Deisenroth · Senanayak Sesh Kumar Karri -
2022 : Recommendations for Baselines and Benchmarking Approximate Gaussian Processes »
Sebastian Ober · David Burt · Artem Artemev · Mark van der Wilk -
2022 : Short-term Prediction and Filtering of Solar Power Using State-Space Gaussian Processes »
So Takao · Sean Nassimiha · Peter Dudfield · Jack Kelly · Marc Deisenroth -
2022 : Optimal Transport for Offline Imitation Learning »
Yicheng Luo · zhengyao Jiang · Samuel Cohen · Edward Grefenstette · Marc Deisenroth -
2022 : Sparse Convolutions on Lie Groups »
Tycho van der Ouderaa · Mark van der Wilk -
2022 : Causal Discovery using Marginal Likelihood »
Anish Dhir · Mark van der Wilk -
2022 Poster: Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations »
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent Fortuin · Mark van der Wilk -
2022 Poster: SnAKe: Bayesian Optimization with Pathwise Exploration »
Jose Pablo Folch · Shiqiang Zhang · Robert Lee · Behrang Shafei · David Walz · Calvin Tsay · Mark van der Wilk · Ruth Misener -
2022 Poster: Memory safe computations with XLA compiler »
Artem Artemev · Yuze An · Tilman Roeder · Mark van der Wilk -
2022 Poster: Relaxing Equivariance Constraints with Non-stationary Continuous Filters »
Tycho van der Ouderaa · David W. Romero · Mark van der Wilk -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2020 : GENNI: Visualising the Geometry of Equivalences for Neural Network Identifiability »
Arinbjörn Kolbeinsson · Nicholas Jennings · Marc Deisenroth · Daniel Lengyel · Janith Petangoda · Michalis Lazarou · Kate Highnam · John IF Falk -
2020 Poster: Matérn Gaussian Processes on Riemannian Manifolds »
Viacheslav Borovitskiy · Alexander Terenin · Peter Mostowsky · Marc Deisenroth -
2020 Poster: A Bayesian Perspective on Training Speed and Model Selection »
Clare Lyle · Lisa Schut · Robin Ru · Yarin Gal · Mark van der Wilk -
2020 Session: Orals & Spotlights Track 25: Probabilistic Models/Statistics »
Marc Deisenroth · Matthew D. Hoffman -
2020 Poster: Probabilistic Active Meta-Learning »
Jean Kaddour · Steindor Saemundsson · Marc Deisenroth -
2020 Poster: Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty »
Miguel Monteiro · Loic Le Folgoc · Daniel Coelho de Castro · Nick Pawlowski · Bernardo Marques · Konstantinos Kamnitsas · Mark van der Wilk · Ben Glocker -
2020 Tutorial: (Track1) There and Back Again: A Tale of Slopes and Expectations Q&A »
Marc Deisenroth · Cheng Soon Ong -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2020 Tutorial: (Track1) There and Back Again: A Tale of Slopes and Expectations »
Marc Deisenroth · Cheng Soon Ong -
2019 : Invited Talk - Marc Deisenroth »
Marc Deisenroth -
2018 Poster: Gaussian Process Conditional Density Estimation »
Vincent Dutordoir · Hugh Salimbeni · James Hensman · Marc Deisenroth -
2018 Poster: Maximizing acquisition functions for Bayesian optimization »
James Wilson · Frank Hutter · Marc Deisenroth -
2018 Poster: Orthogonally Decoupled Variational Gaussian Processes »
Hugh Salimbeni · Ching-An Cheng · Byron Boots · Marc Deisenroth -
2017 Poster: Doubly Stochastic Variational Inference for Deep Gaussian Processes »
Hugh Salimbeni · Marc Deisenroth -
2017 Spotlight: Doubly Stochastic Variational Inference for Deep Gaussian Processes »
Hugh Salimbeni · Marc Deisenroth -
2017 Poster: Identification of Gaussian Process State Space Models »
Stefanos Eleftheriadis · Tom Nicholson · Marc Deisenroth · James Hensman -
2015 : Applications of Bayesian Optimization to Systems »
Marc Deisenroth -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2013 Workshop: Advances in Machine Learning for Sensorimotor Control »
Thomas Walsh · Alborz Geramifard · Marc Deisenroth · Jonathan How · Jan Peters -
2012 Poster: Expectation Propagation in Gaussian Process Dynamical Systems »
Marc Deisenroth · Shakir Mohamed -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters