Timezone: »
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian Ober · David Burt · Artem Artemev · Mark van der Wilk
We discuss the use of the sparse Gaussian process regression (SGPR) method introduced by Titsias (2009) as a baseline for approximate Gaussian processes. We make concrete recommendations to ensure that it is a strong baseline, ensuring that meaningful comparisons can be made. In doing so, we provide recommendations for comparing Gaussian process approximations, designed to explore both the limitations of methods as well as understand their computation-accuracy tradeoffs. This is particularly important now that highly accurate GP approximations are available, so that the literature provides a clear picture of currently achievable results.
Author Information
Sebastian Ober (University of Cambridge)
David Burt (University of Cambridge)
Artem Artemev (Imperial College London)
Mark van der Wilk (Imperial College London)
More from the Same Authors
-
2022 : Actually Sparse Variational Gaussian Processes »
Jake Cunningham · So Takao · Mark van der Wilk · Marc Deisenroth -
2022 : Sparse Convolutions on Lie Groups »
Tycho van der Ouderaa · Mark van der Wilk -
2022 : Causal Discovery using Marginal Likelihood »
Anish Dhir · Mark van der Wilk -
2022 Poster: Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations »
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent Fortuin · Mark van der Wilk -
2022 Poster: SnAKe: Bayesian Optimization with Pathwise Exploration »
Jose Pablo Folch · Shiqiang Zhang · Robert Lee · Behrang Shafei · David Walz · Calvin Tsay · Mark van der Wilk · Ruth Misener -
2022 Poster: Memory safe computations with XLA compiler »
Artem Artemev · Yuze An · Tilman Roeder · Mark van der Wilk -
2022 Poster: Relaxing Equivariance Constraints with Non-stationary Continuous Filters »
Tycho van der Ouderaa · David W. Romero · Mark van der Wilk -
2021 Poster: How Tight Can PAC-Bayes be in the Small Data Regime? »
Andrew Foong · Wessel Bruinsma · David Burt · Richard Turner -
2021 Poster: Scalable Thompson Sampling using Sparse Gaussian Process Models »
Sattar Vakili · Henry Moss · Artem Artemev · Vincent Dutordoir · Victor Picheny -
2021 Poster: A variational approximate posterior for the deep Wishart process »
Sebastian Ober · Laurence Aitchison -
2020 Poster: A Bayesian Perspective on Training Speed and Model Selection »
Clare Lyle · Lisa Schut · Robin Ru · Yarin Gal · Mark van der Wilk -
2020 Poster: On the Expressiveness of Approximate Inference in Bayesian Neural Networks »
Andrew Foong · David Burt · Yingzhen Li · Richard Turner -
2020 Poster: Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty »
Miguel Monteiro · Loic Le Folgoc · Daniel Coelho de Castro · Nick Pawlowski · Bernardo Marques · Konstantinos Kamnitsas · Mark van der Wilk · Ben Glocker