Timezone: »
Leveraging the Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
Maximilian Mueller · Robin Greif · Frank Jenko · Nils Thuerey
We investigate uncertainty estimation and multimodality via the non-deterministic predictions of Bayesian neural networks (BNNs) in fluid simulations. To this end, we deploy BNNs in two challenging experimental test-cases: We show that BNNs, when used as surrogate models for steady-state fluid flow predictions, provide accurate physical predictions together with sensible estimates of uncertainty.In our main experiment, we study BNNs in the context of differentiable solver interactions with turbulent plasma flows. We find that BNN-based corrector networks can stabilize coarse-grained simulations and successfully create diverse trajectories.
Author Information
Maximilian Mueller (Universtity of Tübingen)
Robin Greif (Max Planck Institute for Plasma Physics)
Frank Jenko (Max Planck Institute for Plasma Physics)
Nils Thuerey (Technical University of Munich)
More from the Same Authors
-
2022 : Perturbing BatchNorm and Only BatchNorm Benefits Sharpness-Aware Minimization »
Maximilian Mueller · Matthias Hein -
2022 : Learning Similarity Metrics for Volumetric Simulations with Multiscale CNNs »
Georg Kohl · Liwei Chen · Nils Thuerey -
2022 : Score Matching via Differentiable Physics »
Benjamin Holzschuh · Simona Vegetti · Nils Thuerey -
2022 Poster: Scale-invariant Learning by Physics Inversion »
Philipp Holl · Vladlen Koltun · Nils Thuerey -
2022 Poster: Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics »
Lukas Prantl · Benjamin Ummenhofer · Vladlen Koltun · Nils Thuerey -
2022 Poster: ULNeF: Untangled Layered Neural Fields for Mix-and-Match Virtual Try-On »
Igor Santesteban · Miguel Otaduy · Nils Thuerey · Dan Casas -
2021 : Nils Thuerey »
Nils Thuerey -
2020 : Liwei Chen - Deep Learning Surrogates for Computational Fluid Dynamics »
Nils Thuerey -
2020 : Nils Thuerey - Lead the Way! Deep Learning via Differentiable Simulations »
Nils Thuerey -
2020 : Oral 01: phiflow - A differentiable PDE solving framework for deep learning via physical simulations »
Nils Thuerey -
2020 Poster: Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers »
Kiwon Um · Robert Brand · Yun (Raymond) Fei · Philipp Holl · Nils Thuerey -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2018 : Coffee Break 1 (Posters) »
Ananya Kumar · Siyu Huang · Huazhe Xu · Michael Janner · Parth Chadha · Nils Thuerey · Peter Lu · Maria Bauza · Anthony Tompkins · Guanya Shi · Thomas Baumeister · André Ofner · Zhi-Qi Cheng · Yuping Luo · Deepika Bablani · Jeroen Vanbaar · Kartic Subr · Tatiana López-Guevara · Devesh Jha · Fabian Fuchs · Stefano Rosa · Alison Pouplin · Alex Ray · Qi Liu · Eric Crawford