Timezone: »
Efficiently Moving Instead of Reweighting Collider Events with Machine Learning
Radha Mastandrea · Benjamin Nachman
There are many cases in collider physics and elsewhere where a calibration dataset is used to predict the known physics and / or noise of a target region of phase space. This calibration dataset usually cannot be used out-of-the-box but must be tweaked, often with conditional importance weights, to be maximally realistic. Using resonant anomaly detection as an example, we compare a number of alternative approaches based on transporting events with normalizing flows instead of reweighting them. We find that the accuracy of the morphed calibration dataset depends on the degree to which the transport task is set up to carry out optimal transport, which motivates future research into this area.
Author Information
Radha Mastandrea (UC Berkeley)
Benjamin Nachman (Lawrence Berkeley National Laboratory)
More from the Same Authors
-
2021 : Latent Space Refinement for Deep Generative Models »
Ramon Winterhalder · Marco Bellagente · Benjamin Nachman -
2021 : Classifying Anomalies THrough Outer Density Estimation (CATHODE) »
Joshua Isaacson · Gregor Kasieczka · Benjamin Nachman · David Shih · Manuel Sommerhalder -
2021 : Uncertainty Aware Learning for High Energy Physics With A Cautionary Tale »
Aishik Ghosh · Benjamin Nachman -
2021 : Symmetry Discovery with Deep Learning »
Krish Desai · Benjamin Nachman · Jesse Thaler -
2021 : Latent Space Refinement for Deep Generative Models »
Ramon Winterhalder · Marco Bellagente · Benjamin Nachman -
2022 : Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics »
Rikab Gambhir · Jesse Thaler · Benjamin Nachman -
2022 : Deconvolving Detector Effects for Distribution Moments »
Krish Desai · Benjamin Nachman · Jesse Thaler -
2022 : Particle-level Compression for New Physics Searches »
Yifeng Huang · Jack Collins · Benjamin Nachman · Simon Knapen · Daniel Whiteson -
2022 : One-Class Dense Networks for Anomaly Detection »
Norman Karr · Benjamin Nachman · David Shih -
2022 : Anomaly Detection with Multiple Reference Datasets in High Energy Physics »
Mayee Chen · Benjamin Nachman · Frederic Sala -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2017 : Poster session 2 and coffee break »
Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2017 : Poster session 1 and coffee break »
Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy