Timezone: »
We propose a similarity model based on entropy, which allows for the creation of physically meaningful ground truth distances for the similarity assessment of scalar and vectorial data, produced from transport and motion-based simulations. Utilizing two data acquisition methods derived from this model, we create collections of fields from numerical PDE solvers and existing simulation data repositories. Furthermore, a multiscale CNN architecture that computes a volumetric similarity metric (VolSiM) is proposed and its robustness is evaluated on a large range of test data. To the best of our knowledge this is the first learning method inherently designed to address the similarity assessment of high-dimensional simulation data.
Author Information
Georg Kohl (Technical University of Munich)
Liwei Chen (Technische Universität München)
Nils Thuerey (Technical University of Munich)
More from the Same Authors
-
2022 : Leveraging the Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations »
Maximilian Mueller · Robin Greif · Frank Jenko · Nils Thuerey -
2022 : Score Matching via Differentiable Physics »
Benjamin Holzschuh · Simona Vegetti · Nils Thuerey -
2022 Poster: Scale-invariant Learning by Physics Inversion »
Philipp Holl · Vladlen Koltun · Nils Thuerey -
2022 Poster: Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics »
Lukas Prantl · Benjamin Ummenhofer · Vladlen Koltun · Nils Thuerey -
2022 Poster: ULNeF: Untangled Layered Neural Fields for Mix-and-Match Virtual Try-On »
Igor Santesteban · Miguel Otaduy · Nils Thuerey · Dan Casas -
2021 : Nils Thuerey »
Nils Thuerey -
2020 : Liwei Chen - Deep Learning Surrogates for Computational Fluid Dynamics »
Nils Thuerey -
2020 : Nils Thuerey - Lead the Way! Deep Learning via Differentiable Simulations »
Nils Thuerey -
2020 : Oral 01: phiflow - A differentiable PDE solving framework for deep learning via physical simulations »
Nils Thuerey -
2020 Poster: Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers »
Kiwon Um · Robert Brand · Yun (Raymond) Fei · Philipp Holl · Nils Thuerey -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2018 : Coffee Break 1 (Posters) »
Ananya Kumar · Siyu Huang · Huazhe Xu · Michael Janner · Parth Chadha · Nils Thuerey · Peter Lu · Maria Bauza · Anthony Tompkins · Guanya Shi · Thomas Baumeister · André Ofner · Zhi-Qi Cheng · Yuping Luo · Deepika Bablani · Jeroen Vanbaar · Kartic Subr · Tatiana López-Guevara · Devesh Jha · Fabian Fuchs · Stefano Rosa · Alison Pouplin · Alex Ray · Qi Liu · Eric Crawford